Metamath Proof Explorer


Theorem shftcan1

Description: Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis shftfval.1 FV
Assertion shftcan1 ABFshiftAshiftAB=FB

Proof

Step Hyp Ref Expression
1 shftfval.1 FV
2 negcl AA
3 1 2shfti AAFshiftAshiftA=FshiftA+A
4 2 3 mpdan AFshiftAshiftA=FshiftA+A
5 negid AA+A=0
6 5 oveq2d AFshiftA+A=Fshift0
7 4 6 eqtrd AFshiftAshiftA=Fshift0
8 7 fveq1d AFshiftAshiftAB=Fshift0B
9 1 shftidt BFshift0B=FB
10 8 9 sylan9eq ABFshiftAshiftAB=FB