Metamath Proof Explorer


Definition df-shft

Description: Define a function shifter. This operation offsets the value argument of a function (ordinarily on a subset of CC ) and produces a new function on CC . See shftval for its value. (Contributed by NM, 20-Jul-2005)

Ref Expression
Assertion df-shft shift=fV,xyz|yyxfz

Detailed syntax breakdown

Step Hyp Ref Expression
0 cshi classshift
1 vf setvarf
2 cvv classV
3 vx setvarx
4 cc class
5 vy setvary
6 vz setvarz
7 5 cv setvary
8 7 4 wcel wffy
9 cmin class
10 3 cv setvarx
11 7 10 9 co classyx
12 1 cv setvarf
13 6 cv setvarz
14 11 13 12 wbr wffyxfz
15 8 14 wa wffyyxfz
16 15 5 6 copab classyz|yyxfz
17 1 3 2 4 16 cmpo classfV,xyz|yyxfz
18 0 17 wceq wffshift=fV,xyz|yyxfz