Metamath Proof Explorer


Theorem shftval

Description: Value of a sequence shifted by A . (Contributed by NM, 20-Jul-2005) (Revised by Mario Carneiro, 4-Nov-2013)

Ref Expression
Hypothesis shftfval.1 FV
Assertion shftval ABFshiftAB=FBA

Proof

Step Hyp Ref Expression
1 shftfval.1 FV
2 1 shftfib ABFshiftAB=FBA
3 2 eleq2d ABxFshiftABxFBA
4 3 iotabidv ABιx|xFshiftAB=ιx|xFBA
5 dffv3 FshiftAB=ιx|xFshiftAB
6 dffv3 FBA=ιx|xFBA
7 4 5 6 3eqtr4g ABFshiftAB=FBA