Metamath Proof Explorer


Theorem shftfib

Description: Value of a fiber of the relation F . (Contributed by Mario Carneiro, 4-Nov-2013)

Ref Expression
Hypothesis shftfval.1 FV
Assertion shftfib ABFshiftAB=FBA

Proof

Step Hyp Ref Expression
1 shftfval.1 FV
2 1 shftfval AFshiftA=xy|xxAFy
3 2 breqd ABFshiftAzBxy|xxAFyz
4 eleq1 x=BxB
5 oveq1 x=BxA=BA
6 5 breq1d x=BxAFyBAFy
7 4 6 anbi12d x=BxxAFyBBAFy
8 breq2 y=zBAFyBAFz
9 8 anbi2d y=zBBAFyBBAFz
10 eqid xy|xxAFy=xy|xxAFy
11 7 9 10 brabg BzVBxy|xxAFyzBBAFz
12 11 elvd BBxy|xxAFyzBBAFz
13 3 12 sylan9bb ABBFshiftAzBBAFz
14 ibar BBAFzBBAFz
15 14 adantl ABBAFzBBAFz
16 13 15 bitr4d ABBFshiftAzBAFz
17 16 abbidv ABz|BFshiftAz=z|BAFz
18 imasng BFshiftAB=z|BFshiftAz
19 18 adantl ABFshiftAB=z|BFshiftAz
20 ovex BAV
21 imasng BAVFBA=z|BAFz
22 20 21 mp1i ABFBA=z|BAFz
23 17 19 22 3eqtr4d ABFshiftAB=FBA