Metamath Proof Explorer


Theorem 2shfti

Description: Composite shift operations. (Contributed by NM, 19-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis shftfval.1 FV
Assertion 2shfti ABFshiftAshiftB=FshiftA+B

Proof

Step Hyp Ref Expression
1 shftfval.1 FV
2 1 shftfval AFshiftA=zw|zzAFw
3 2 breqd AxBFshiftAyxBzw|zzAFwy
4 ovex xBV
5 vex yV
6 eleq1 z=xBzxB
7 oveq1 z=xBzA=x-B-A
8 7 breq1d z=xBzAFwx-B-AFw
9 6 8 anbi12d z=xBzzAFwxBx-B-AFw
10 breq2 w=yx-B-AFwx-B-AFy
11 10 anbi2d w=yxBx-B-AFwxBx-B-AFy
12 eqid zw|zzAFw=zw|zzAFw
13 4 5 9 11 12 brab xBzw|zzAFwyxBx-B-AFy
14 3 13 bitrdi AxBFshiftAyxBx-B-AFy
15 14 ad2antrr ABxxBFshiftAyxBx-B-AFy
16 subcl xBxB
17 16 biantrurd xBx-B-AFyxBx-B-AFy
18 17 ancoms Bxx-B-AFyxBx-B-AFy
19 18 adantll ABxx-B-AFyxBx-B-AFy
20 sub32 xABx-A-B=x-B-A
21 subsub4 xABx-A-B=xA+B
22 20 21 eqtr3d xABx-B-A=xA+B
23 22 3expb xABx-B-A=xA+B
24 23 ancoms ABxx-B-A=xA+B
25 24 breq1d ABxx-B-AFyxA+BFy
26 15 19 25 3bitr2d ABxxBFshiftAyxA+BFy
27 26 pm5.32da ABxxBFshiftAyxxA+BFy
28 27 opabbidv ABxy|xxBFshiftAy=xy|xxA+BFy
29 ovex FshiftAV
30 29 shftfval BFshiftAshiftB=xy|xxBFshiftAy
31 30 adantl ABFshiftAshiftB=xy|xxBFshiftAy
32 addcl ABA+B
33 1 shftfval A+BFshiftA+B=xy|xxA+BFy
34 32 33 syl ABFshiftA+B=xy|xxA+BFy
35 28 31 34 3eqtr4d ABFshiftAshiftB=FshiftA+B