Metamath Proof Explorer


Theorem sub32

Description: Swap the second and third terms in a double subtraction. (Contributed by NM, 19-Aug-2005)

Ref Expression
Assertion sub32 A B C A - B - C = A - C - B

Proof

Step Hyp Ref Expression
1 addcom B C B + C = C + B
2 1 3adant1 A B C B + C = C + B
3 2 oveq2d A B C A B + C = A C + B
4 subsub4 A B C A - B - C = A B + C
5 subsub4 A C B A - C - B = A C + B
6 5 3com23 A B C A - C - B = A C + B
7 3 4 6 3eqtr4d A B C A - B - C = A - C - B