Step |
Hyp |
Ref |
Expression |
1 |
|
addcom |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) ) |
2 |
1
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) ) |
3 |
2
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − ( 𝐵 + 𝐶 ) ) = ( 𝐴 − ( 𝐶 + 𝐵 ) ) ) |
4 |
|
subsub4 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) − 𝐶 ) = ( 𝐴 − ( 𝐵 + 𝐶 ) ) ) |
5 |
|
subsub4 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) − 𝐵 ) = ( 𝐴 − ( 𝐶 + 𝐵 ) ) ) |
6 |
5
|
3com23 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) − 𝐵 ) = ( 𝐴 − ( 𝐶 + 𝐵 ) ) ) |
7 |
3 4 6
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) − 𝐶 ) = ( ( 𝐴 − 𝐶 ) − 𝐵 ) ) |