Metamath Proof Explorer


Theorem climshft2

Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007) (Revised by Mario Carneiro, 6-Feb-2014)

Ref Expression
Hypotheses climshft2.1
|- Z = ( ZZ>= ` M )
climshft2.2
|- ( ph -> M e. ZZ )
climshft2.3
|- ( ph -> K e. ZZ )
climshft2.5
|- ( ph -> F e. W )
climshft2.6
|- ( ph -> G e. X )
climshft2.7
|- ( ( ph /\ k e. Z ) -> ( G ` ( k + K ) ) = ( F ` k ) )
Assertion climshft2
|- ( ph -> ( F ~~> A <-> G ~~> A ) )

Proof

Step Hyp Ref Expression
1 climshft2.1
 |-  Z = ( ZZ>= ` M )
2 climshft2.2
 |-  ( ph -> M e. ZZ )
3 climshft2.3
 |-  ( ph -> K e. ZZ )
4 climshft2.5
 |-  ( ph -> F e. W )
5 climshft2.6
 |-  ( ph -> G e. X )
6 climshft2.7
 |-  ( ( ph /\ k e. Z ) -> ( G ` ( k + K ) ) = ( F ` k ) )
7 ovexd
 |-  ( ph -> ( G shift -u K ) e. _V )
8 3 zcnd
 |-  ( ph -> K e. CC )
9 eluzelz
 |-  ( k e. ( ZZ>= ` M ) -> k e. ZZ )
10 9 1 eleq2s
 |-  ( k e. Z -> k e. ZZ )
11 10 zcnd
 |-  ( k e. Z -> k e. CC )
12 fvex
 |-  ( _I ` G ) e. _V
13 12 shftval4
 |-  ( ( K e. CC /\ k e. CC ) -> ( ( ( _I ` G ) shift -u K ) ` k ) = ( ( _I ` G ) ` ( K + k ) ) )
14 8 11 13 syl2an
 |-  ( ( ph /\ k e. Z ) -> ( ( ( _I ` G ) shift -u K ) ` k ) = ( ( _I ` G ) ` ( K + k ) ) )
15 fvi
 |-  ( G e. X -> ( _I ` G ) = G )
16 5 15 syl
 |-  ( ph -> ( _I ` G ) = G )
17 16 adantr
 |-  ( ( ph /\ k e. Z ) -> ( _I ` G ) = G )
18 17 oveq1d
 |-  ( ( ph /\ k e. Z ) -> ( ( _I ` G ) shift -u K ) = ( G shift -u K ) )
19 18 fveq1d
 |-  ( ( ph /\ k e. Z ) -> ( ( ( _I ` G ) shift -u K ) ` k ) = ( ( G shift -u K ) ` k ) )
20 addcom
 |-  ( ( K e. CC /\ k e. CC ) -> ( K + k ) = ( k + K ) )
21 8 11 20 syl2an
 |-  ( ( ph /\ k e. Z ) -> ( K + k ) = ( k + K ) )
22 17 21 fveq12d
 |-  ( ( ph /\ k e. Z ) -> ( ( _I ` G ) ` ( K + k ) ) = ( G ` ( k + K ) ) )
23 14 19 22 3eqtr3d
 |-  ( ( ph /\ k e. Z ) -> ( ( G shift -u K ) ` k ) = ( G ` ( k + K ) ) )
24 23 6 eqtrd
 |-  ( ( ph /\ k e. Z ) -> ( ( G shift -u K ) ` k ) = ( F ` k ) )
25 1 7 4 2 24 climeq
 |-  ( ph -> ( ( G shift -u K ) ~~> A <-> F ~~> A ) )
26 3 znegcld
 |-  ( ph -> -u K e. ZZ )
27 climshft
 |-  ( ( -u K e. ZZ /\ G e. X ) -> ( ( G shift -u K ) ~~> A <-> G ~~> A ) )
28 26 5 27 syl2anc
 |-  ( ph -> ( ( G shift -u K ) ~~> A <-> G ~~> A ) )
29 25 28 bitr3d
 |-  ( ph -> ( F ~~> A <-> G ~~> A ) )