| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climshft2.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
climshft2.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
climshft2.3 |
⊢ ( 𝜑 → 𝐾 ∈ ℤ ) |
| 4 |
|
climshft2.5 |
⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) |
| 5 |
|
climshft2.6 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑋 ) |
| 6 |
|
climshft2.7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 7 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 shift - 𝐾 ) ∈ V ) |
| 8 |
3
|
zcnd |
⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 9 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) |
| 10 |
9 1
|
eleq2s |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 11 |
10
|
zcnd |
⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ ) |
| 12 |
|
fvex |
⊢ ( I ‘ 𝐺 ) ∈ V |
| 13 |
12
|
shftval4 |
⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( ( I ‘ 𝐺 ) shift - 𝐾 ) ‘ 𝑘 ) = ( ( I ‘ 𝐺 ) ‘ ( 𝐾 + 𝑘 ) ) ) |
| 14 |
8 11 13
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( I ‘ 𝐺 ) shift - 𝐾 ) ‘ 𝑘 ) = ( ( I ‘ 𝐺 ) ‘ ( 𝐾 + 𝑘 ) ) ) |
| 15 |
|
fvi |
⊢ ( 𝐺 ∈ 𝑋 → ( I ‘ 𝐺 ) = 𝐺 ) |
| 16 |
5 15
|
syl |
⊢ ( 𝜑 → ( I ‘ 𝐺 ) = 𝐺 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( I ‘ 𝐺 ) = 𝐺 ) |
| 18 |
17
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( I ‘ 𝐺 ) shift - 𝐾 ) = ( 𝐺 shift - 𝐾 ) ) |
| 19 |
18
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( I ‘ 𝐺 ) shift - 𝐾 ) ‘ 𝑘 ) = ( ( 𝐺 shift - 𝐾 ) ‘ 𝑘 ) ) |
| 20 |
|
addcom |
⊢ ( ( 𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐾 + 𝑘 ) = ( 𝑘 + 𝐾 ) ) |
| 21 |
8 11 20
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐾 + 𝑘 ) = ( 𝑘 + 𝐾 ) ) |
| 22 |
17 21
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( I ‘ 𝐺 ) ‘ ( 𝐾 + 𝑘 ) ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ) |
| 23 |
14 19 22
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 shift - 𝐾 ) ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑘 + 𝐾 ) ) ) |
| 24 |
23 6
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 shift - 𝐾 ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 25 |
1 7 4 2 24
|
climeq |
⊢ ( 𝜑 → ( ( 𝐺 shift - 𝐾 ) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴 ) ) |
| 26 |
3
|
znegcld |
⊢ ( 𝜑 → - 𝐾 ∈ ℤ ) |
| 27 |
|
climshft |
⊢ ( ( - 𝐾 ∈ ℤ ∧ 𝐺 ∈ 𝑋 ) → ( ( 𝐺 shift - 𝐾 ) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴 ) ) |
| 28 |
26 5 27
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 shift - 𝐾 ) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴 ) ) |
| 29 |
25 28
|
bitr3d |
⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴 ) ) |