Step |
Hyp |
Ref |
Expression |
1 |
|
rlimcld2.1 |
|- ( ph -> sup ( A , RR* , < ) = +oo ) |
2 |
|
rlimcld2.2 |
|- ( ph -> ( x e. A |-> B ) ~~>r C ) |
3 |
|
rlimrecl.3 |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
4 |
|
rlimge0.4 |
|- ( ( ph /\ x e. A ) -> 0 <_ B ) |
5 |
3
|
recnd |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
6 |
3
|
rered |
|- ( ( ph /\ x e. A ) -> ( Re ` B ) = B ) |
7 |
4 6
|
breqtrrd |
|- ( ( ph /\ x e. A ) -> 0 <_ ( Re ` B ) ) |
8 |
1 2 5 7
|
rlimrege0 |
|- ( ph -> 0 <_ ( Re ` C ) ) |
9 |
1 2 3
|
rlimrecl |
|- ( ph -> C e. RR ) |
10 |
9
|
rered |
|- ( ph -> ( Re ` C ) = C ) |
11 |
8 10
|
breqtrd |
|- ( ph -> 0 <_ C ) |