Metamath Proof Explorer


Theorem rlimrecl

Description: The limit of a real sequence is real. (Contributed by Mario Carneiro, 9-May-2016)

Ref Expression
Hypotheses rlimcld2.1 ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ )
rlimcld2.2 ( 𝜑 → ( 𝑥𝐴𝐵 ) ⇝𝑟 𝐶 )
rlimrecl.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
Assertion rlimrecl ( 𝜑𝐶 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 rlimcld2.1 ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ )
2 rlimcld2.2 ( 𝜑 → ( 𝑥𝐴𝐵 ) ⇝𝑟 𝐶 )
3 rlimrecl.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
4 ax-resscn ℝ ⊆ ℂ
5 4 a1i ( 𝜑 → ℝ ⊆ ℂ )
6 eldifi ( 𝑦 ∈ ( ℂ ∖ ℝ ) → 𝑦 ∈ ℂ )
7 6 adantl ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) → 𝑦 ∈ ℂ )
8 7 imcld ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( ℑ ‘ 𝑦 ) ∈ ℝ )
9 8 recnd ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( ℑ ‘ 𝑦 ) ∈ ℂ )
10 eldifn ( 𝑦 ∈ ( ℂ ∖ ℝ ) → ¬ 𝑦 ∈ ℝ )
11 10 adantl ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) → ¬ 𝑦 ∈ ℝ )
12 reim0b ( 𝑦 ∈ ℂ → ( 𝑦 ∈ ℝ ↔ ( ℑ ‘ 𝑦 ) = 0 ) )
13 7 12 syl ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( 𝑦 ∈ ℝ ↔ ( ℑ ‘ 𝑦 ) = 0 ) )
14 13 necon3bbid ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( ¬ 𝑦 ∈ ℝ ↔ ( ℑ ‘ 𝑦 ) ≠ 0 ) )
15 11 14 mpbid ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( ℑ ‘ 𝑦 ) ≠ 0 )
16 9 15 absrpcld ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) → ( abs ‘ ( ℑ ‘ 𝑦 ) ) ∈ ℝ+ )
17 7 adantr ( ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → 𝑦 ∈ ℂ )
18 simpr ( ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ )
19 18 recnd ( ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℂ )
20 17 19 subcld ( ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( 𝑦𝑧 ) ∈ ℂ )
21 absimle ( ( 𝑦𝑧 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( 𝑦𝑧 ) ) ) ≤ ( abs ‘ ( 𝑦𝑧 ) ) )
22 20 21 syl ( ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ ( 𝑦𝑧 ) ) ) ≤ ( abs ‘ ( 𝑦𝑧 ) ) )
23 17 19 imsubd ( ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ℑ ‘ ( 𝑦𝑧 ) ) = ( ( ℑ ‘ 𝑦 ) − ( ℑ ‘ 𝑧 ) ) )
24 reim0 ( 𝑧 ∈ ℝ → ( ℑ ‘ 𝑧 ) = 0 )
25 24 adantl ( ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ℑ ‘ 𝑧 ) = 0 )
26 25 oveq2d ( ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ( ℑ ‘ 𝑦 ) − ( ℑ ‘ 𝑧 ) ) = ( ( ℑ ‘ 𝑦 ) − 0 ) )
27 9 adantr ( ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ℑ ‘ 𝑦 ) ∈ ℂ )
28 27 subid1d ( ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ( ℑ ‘ 𝑦 ) − 0 ) = ( ℑ ‘ 𝑦 ) )
29 23 26 28 3eqtrrd ( ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( ℑ ‘ 𝑦 ) = ( ℑ ‘ ( 𝑦𝑧 ) ) )
30 29 fveq2d ( ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ 𝑦 ) ) = ( abs ‘ ( ℑ ‘ ( 𝑦𝑧 ) ) ) )
31 19 17 abssubd ( ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( abs ‘ ( 𝑧𝑦 ) ) = ( abs ‘ ( 𝑦𝑧 ) ) )
32 22 30 31 3brtr4d ( ( ( 𝜑𝑦 ∈ ( ℂ ∖ ℝ ) ) ∧ 𝑧 ∈ ℝ ) → ( abs ‘ ( ℑ ‘ 𝑦 ) ) ≤ ( abs ‘ ( 𝑧𝑦 ) ) )
33 1 2 5 16 32 3 rlimcld2 ( 𝜑𝐶 ∈ ℝ )