Metamath Proof Explorer
Description: The absolute value of a nonzero number is a positive real.
(Contributed by Mario Carneiro, 29-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
abscld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
|
|
absne0d.2 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
|
Assertion |
absrpcld |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
abscld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
absne0d.2 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
3 |
|
absrpcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |