Metamath Proof Explorer


Theorem imsubd

Description: Imaginary part distributes over subtraction. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1 φA
readdd.2 φB
Assertion imsubd φAB=AB

Proof

Step Hyp Ref Expression
1 recld.1 φA
2 readdd.2 φB
3 imsub ABAB=AB
4 1 2 3 syl2anc φAB=AB