Metamath Proof Explorer


Theorem imsub

Description: Imaginary part distributes over subtraction. (Contributed by NM, 18-Mar-2005)

Ref Expression
Assertion imsub ABAB=AB

Proof

Step Hyp Ref Expression
1 negcl BB
2 imadd ABA+B=A+B
3 1 2 sylan2 ABA+B=A+B
4 imneg BB=B
5 4 adantl ABB=B
6 5 oveq2d ABA+B=A+B
7 3 6 eqtrd ABA+B=A+B
8 negsub ABA+B=AB
9 8 fveq2d ABA+B=AB
10 imcl AA
11 10 recnd AA
12 imcl BB
13 12 recnd BB
14 negsub ABA+B=AB
15 11 13 14 syl2an ABA+B=AB
16 7 9 15 3eqtr3d ABAB=AB