Metamath Proof Explorer


Theorem imadd

Description: Imaginary part distributes over addition. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion imadd ABA+B=A+B

Proof

Step Hyp Ref Expression
1 recl AA
2 1 adantr ABA
3 2 recnd ABA
4 ax-icn i
5 imcl AA
6 5 adantr ABA
7 6 recnd ABA
8 mulcl iAiA
9 4 7 8 sylancr ABiA
10 recl BB
11 10 adantl ABB
12 11 recnd ABB
13 imcl BB
14 13 adantl ABB
15 14 recnd ABB
16 mulcl iBiB
17 4 15 16 sylancr ABiB
18 3 9 12 17 add4d ABA+iA+B+iB=A+B+iA+iB
19 replim AA=A+iA
20 replim BB=B+iB
21 19 20 oveqan12d ABA+B=A+iA+B+iB
22 4 a1i ABi
23 22 7 15 adddid ABiA+B=iA+iB
24 23 oveq2d ABA+B+iA+B=A+B+iA+iB
25 18 21 24 3eqtr4d ABA+B=A+B+iA+B
26 25 fveq2d ABA+B=A+B+iA+B
27 readdcl ABA+B
28 1 10 27 syl2an ABA+B
29 readdcl ABA+B
30 5 13 29 syl2an ABA+B
31 crim A+BA+BA+B+iA+B=A+B
32 28 30 31 syl2anc ABA+B+iA+B=A+B
33 26 32 eqtrd ABA+B=A+B