Metamath Proof Explorer


Theorem climmpt

Description: Exhibit a function G with the same convergence properties as the not-quite-function F . (Contributed by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses 2clim.1 Z=M
climmpt.2 G=kZFk
Assertion climmpt MFVFAGA

Proof

Step Hyp Ref Expression
1 2clim.1 Z=M
2 climmpt.2 G=kZFk
3 simpr MFVFV
4 fvex MV
5 1 4 eqeltri ZV
6 5 mptex kZFkV
7 2 6 eqeltri GV
8 7 a1i MFVGV
9 simpl MFVM
10 fveq2 k=mFk=Fm
11 fvex FmV
12 10 2 11 fvmpt mZGm=Fm
13 12 eqcomd mZFm=Gm
14 13 adantl MFVmZFm=Gm
15 1 3 8 9 14 climeq MFVFAGA