Step |
Hyp |
Ref |
Expression |
1 |
|
2clim.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
climmpt.2 |
|- G = ( k e. Z |-> ( F ` k ) ) |
3 |
|
simpr |
|- ( ( M e. ZZ /\ F e. V ) -> F e. V ) |
4 |
|
fvex |
|- ( ZZ>= ` M ) e. _V |
5 |
1 4
|
eqeltri |
|- Z e. _V |
6 |
5
|
mptex |
|- ( k e. Z |-> ( F ` k ) ) e. _V |
7 |
2 6
|
eqeltri |
|- G e. _V |
8 |
7
|
a1i |
|- ( ( M e. ZZ /\ F e. V ) -> G e. _V ) |
9 |
|
simpl |
|- ( ( M e. ZZ /\ F e. V ) -> M e. ZZ ) |
10 |
|
fveq2 |
|- ( k = m -> ( F ` k ) = ( F ` m ) ) |
11 |
|
fvex |
|- ( F ` m ) e. _V |
12 |
10 2 11
|
fvmpt |
|- ( m e. Z -> ( G ` m ) = ( F ` m ) ) |
13 |
12
|
eqcomd |
|- ( m e. Z -> ( F ` m ) = ( G ` m ) ) |
14 |
13
|
adantl |
|- ( ( ( M e. ZZ /\ F e. V ) /\ m e. Z ) -> ( F ` m ) = ( G ` m ) ) |
15 |
1 3 8 9 14
|
climeq |
|- ( ( M e. ZZ /\ F e. V ) -> ( F ~~> A <-> G ~~> A ) ) |