Description: A sequence on an upper integer set converges in the real sense iff it converges in the integer sense. (Contributed by Mario Carneiro, 16-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rlimclim.1 | |
|
rlimclim.2 | |
||
rlimclim.3 | |
||
Assertion | rlimclim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimclim.1 | |
|
2 | rlimclim.2 | |
|
3 | rlimclim.3 | |
|
4 | 2 | adantr | |
5 | simpr | |
|
6 | fdm | |
|
7 | eqimss2 | |
|
8 | 3 6 7 | 3syl | |
9 | 8 | adantr | |
10 | 1 4 5 9 | rlimclim1 | |
11 | climcl | |
|
12 | 11 | adantl | |
13 | 2 | ad2antrr | |
14 | simpr | |
|
15 | eqidd | |
|
16 | simplr | |
|
17 | 1 13 14 15 16 | climi2 | |
18 | uzssz | |
|
19 | 1 18 | eqsstri | |
20 | zssre | |
|
21 | 19 20 | sstri | |
22 | fveq2 | |
|
23 | 22 | fvoveq1d | |
24 | 23 | breq1d | |
25 | simplrr | |
|
26 | simplrl | |
|
27 | 19 26 | sselid | |
28 | simprl | |
|
29 | 19 28 | sselid | |
30 | simprr | |
|
31 | eluz2 | |
|
32 | 27 29 30 31 | syl3anbrc | |
33 | 24 25 32 | rspcdva | |
34 | 33 | expr | |
35 | 34 | ralrimiva | |
36 | 35 | expr | |
37 | 36 | reximdva | |
38 | ssrexv | |
|
39 | 21 37 38 | mpsylsyld | |
40 | 17 39 | mpd | |
41 | 40 | ralrimiva | |
42 | 3 | adantr | |
43 | 21 | a1i | |
44 | eqidd | |
|
45 | 42 43 44 | rlim | |
46 | 12 41 45 | mpbir2and | |
47 | 10 46 | impbida | |