Metamath Proof Explorer


Theorem fnlimfv

Description: The value of the limit function G at any point of its domain D . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fnlimfv.1 _xD
fnlimfv.2 _xF
fnlimfv.3 G=xDmZFmx
fnlimfv.4 φXD
Assertion fnlimfv φGX=mZFmX

Proof

Step Hyp Ref Expression
1 fnlimfv.1 _xD
2 fnlimfv.2 _xF
3 fnlimfv.3 G=xDmZFmx
4 fnlimfv.4 φXD
5 nfcv _yD
6 nfcv _ymZFmx
7 nfcv _x
8 nfcv _xZ
9 nfcv _xm
10 2 9 nffv _xFm
11 nfcv _xy
12 10 11 nffv _xFmy
13 8 12 nfmpt _xmZFmy
14 7 13 nffv _xmZFmy
15 fveq2 x=yFmx=Fmy
16 15 mpteq2dv x=ymZFmx=mZFmy
17 16 fveq2d x=ymZFmx=mZFmy
18 1 5 6 14 17 cbvmptf xDmZFmx=yDmZFmy
19 3 18 eqtri G=yDmZFmy
20 fveq2 y=XFmy=FmX
21 20 mpteq2dv y=XmZFmy=mZFmX
22 21 fveq2d y=XmZFmy=mZFmX
23 fvexd φmZFmXV
24 19 22 4 23 fvmptd3 φGX=mZFmX