| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnlimfv.1 |
⊢ Ⅎ 𝑥 𝐷 |
| 2 |
|
fnlimfv.2 |
⊢ Ⅎ 𝑥 𝐹 |
| 3 |
|
fnlimfv.3 |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) |
| 4 |
|
fnlimfv.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐷 |
| 6 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) |
| 7 |
|
nfcv |
⊢ Ⅎ 𝑥 ⇝ |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑍 |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑚 |
| 10 |
2 9
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑚 ) |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 12 |
10 11
|
nffv |
⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) |
| 13 |
8 12
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 14 |
7 13
|
nffv |
⊢ Ⅎ 𝑥 ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 16 |
15
|
mpteq2dv |
⊢ ( 𝑥 = 𝑦 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝑥 = 𝑦 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) ) |
| 18 |
1 5 6 14 17
|
cbvmptf |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑥 ) ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) ) |
| 19 |
3 18
|
eqtri |
⊢ 𝐺 = ( 𝑦 ∈ 𝐷 ↦ ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) |
| 21 |
20
|
mpteq2dv |
⊢ ( 𝑦 = 𝑋 → ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) = ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) |
| 22 |
21
|
fveq2d |
⊢ ( 𝑦 = 𝑋 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑦 ) ) ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |
| 23 |
|
fvexd |
⊢ ( 𝜑 → ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ∈ V ) |
| 24 |
19 22 4 23
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) = ( ⇝ ‘ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑚 ) ‘ 𝑋 ) ) ) ) |