Description: The scalar ring of a subcomplex module contains the integers. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clm0.f | |- F = ( Scalar ` W ) | |
| clmsub.k | |- K = ( Base ` F ) | ||
| Assertion | clmzss | |- ( W e. CMod -> ZZ C_ K ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | clm0.f | |- F = ( Scalar ` W ) | |
| 2 | clmsub.k | |- K = ( Base ` F ) | |
| 3 | 1 2 | clmsubrg | |- ( W e. CMod -> K e. ( SubRing ` CCfld ) ) | 
| 4 | zsssubrg | |- ( K e. ( SubRing ` CCfld ) -> ZZ C_ K ) | |
| 5 | 3 4 | syl | |- ( W e. CMod -> ZZ C_ K ) |