Metamath Proof Explorer


Theorem clmzss

Description: The scalar ring of a subcomplex module contains the integers. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f F=ScalarW
clmsub.k K=BaseF
Assertion clmzss WCModK

Proof

Step Hyp Ref Expression
1 clm0.f F=ScalarW
2 clmsub.k K=BaseF
3 1 2 clmsubrg WCModKSubRingfld
4 zsssubrg KSubRingfldK
5 3 4 syl WCModK