Metamath Proof Explorer


Theorem clsss3

Description: The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007)

Ref Expression
Hypothesis clscld.1
|- X = U. J
Assertion clsss3
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X )

Proof

Step Hyp Ref Expression
1 clscld.1
 |-  X = U. J
2 1 clscld
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) e. ( Clsd ` J ) )
3 1 cldss
 |-  ( ( ( cls ` J ) ` S ) e. ( Clsd ` J ) -> ( ( cls ` J ) ` S ) C_ X )
4 2 3 syl
 |-  ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X )