| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmptid.j |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 2 |
|
cnmpt11.a |
|- ( ph -> ( x e. X |-> A ) e. ( J Cn K ) ) |
| 3 |
|
cnmpt1t.b |
|- ( ph -> ( x e. X |-> B ) e. ( J Cn L ) ) |
| 4 |
|
cnmpt12f.f |
|- ( ph -> F e. ( ( K tX L ) Cn M ) ) |
| 5 |
|
df-ov |
|- ( A F B ) = ( F ` <. A , B >. ) |
| 6 |
5
|
mpteq2i |
|- ( x e. X |-> ( A F B ) ) = ( x e. X |-> ( F ` <. A , B >. ) ) |
| 7 |
1 2 3
|
cnmpt1t |
|- ( ph -> ( x e. X |-> <. A , B >. ) e. ( J Cn ( K tX L ) ) ) |
| 8 |
1 7 4
|
cnmpt11f |
|- ( ph -> ( x e. X |-> ( F ` <. A , B >. ) ) e. ( J Cn M ) ) |
| 9 |
6 8
|
eqeltrid |
|- ( ph -> ( x e. X |-> ( A F B ) ) e. ( J Cn M ) ) |