Metamath Proof Explorer


Theorem cnmpt12f

Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses cnmptid.j φJTopOnX
cnmpt11.a φxXAJCnK
cnmpt1t.b φxXBJCnL
cnmpt12f.f φFK×tLCnM
Assertion cnmpt12f φxXAFBJCnM

Proof

Step Hyp Ref Expression
1 cnmptid.j φJTopOnX
2 cnmpt11.a φxXAJCnK
3 cnmpt1t.b φxXBJCnL
4 cnmpt12f.f φFK×tLCnM
5 df-ov AFB=FAB
6 5 mpteq2i xXAFB=xXFAB
7 1 2 3 cnmpt1t φxXABJCnK×tL
8 1 7 4 cnmpt11f φxXFABJCnM
9 6 8 eqeltrid φxXAFBJCnM