| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmptid.j |
|
| 2 |
|
cnmpt11.a |
|
| 3 |
|
cnmpt1t.b |
|
| 4 |
|
toponuni |
|
| 5 |
|
mpteq1 |
|
| 6 |
1 4 5
|
3syl |
|
| 7 |
|
simpr |
|
| 8 |
|
cntop2 |
|
| 9 |
2 8
|
syl |
|
| 10 |
|
toptopon2 |
|
| 11 |
9 10
|
sylib |
|
| 12 |
|
cnf2 |
|
| 13 |
1 11 2 12
|
syl3anc |
|
| 14 |
13
|
fvmptelcdm |
|
| 15 |
|
eqid |
|
| 16 |
15
|
fvmpt2 |
|
| 17 |
7 14 16
|
syl2anc |
|
| 18 |
|
cntop2 |
|
| 19 |
3 18
|
syl |
|
| 20 |
|
toptopon2 |
|
| 21 |
19 20
|
sylib |
|
| 22 |
|
cnf2 |
|
| 23 |
1 21 3 22
|
syl3anc |
|
| 24 |
23
|
fvmptelcdm |
|
| 25 |
|
eqid |
|
| 26 |
25
|
fvmpt2 |
|
| 27 |
7 24 26
|
syl2anc |
|
| 28 |
17 27
|
opeq12d |
|
| 29 |
28
|
mpteq2dva |
|
| 30 |
6 29
|
eqtr3d |
|
| 31 |
|
eqid |
|
| 32 |
|
nfcv |
|
| 33 |
|
nffvmpt1 |
|
| 34 |
|
nffvmpt1 |
|
| 35 |
33 34
|
nfop |
|
| 36 |
|
fveq2 |
|
| 37 |
|
fveq2 |
|
| 38 |
36 37
|
opeq12d |
|
| 39 |
32 35 38
|
cbvmpt |
|
| 40 |
31 39
|
txcnmpt |
|
| 41 |
2 3 40
|
syl2anc |
|
| 42 |
30 41
|
eqeltrrd |
|