Metamath Proof Explorer


Theorem cnf2

Description: A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cnf2 JTopOnXKTopOnYFJCnKF:XY

Proof

Step Hyp Ref Expression
1 iscn JTopOnXKTopOnYFJCnKF:XYxKF-1xJ
2 1 simprbda JTopOnXKTopOnYFJCnKF:XY
3 2 3impa JTopOnXKTopOnYFJCnKF:XY