Metamath Proof Explorer


Theorem cnpf2

Description: A continuous function at point P is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cnpf2 JTopOnXKTopOnYFJCnPKPF:XY

Proof

Step Hyp Ref Expression
1 eqid J=J
2 eqid K=K
3 1 2 cnpf FJCnPKPF:JK
4 toponuni JTopOnXX=J
5 4 feq2d JTopOnXF:XYF:JY
6 toponuni KTopOnYY=K
7 6 feq3d KTopOnYF:JYF:JK
8 5 7 sylan9bb JTopOnXKTopOnYF:XYF:JK
9 3 8 imbitrrid JTopOnXKTopOnYFJCnPKPF:XY
10 9 3impia JTopOnXKTopOnYFJCnPKPF:XY