Metamath Proof Explorer


Theorem fvmptelcdm

Description: The value of a function at a point of its domain belongs to its codomain. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis fvmptelcdm.1 φxAB:AC
Assertion fvmptelcdm φxABC

Proof

Step Hyp Ref Expression
1 fvmptelcdm.1 φxAB:AC
2 eqid xAB=xAB
3 2 fmpt xABCxAB:AC
4 1 3 sylibr φxABC
5 4 r19.21bi φxABC