Metamath Proof Explorer


Definition df-tx

Description: Define the binary topological product, which is homeomorphic to the general topological product over a two element set, but is more convenient to use. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion df-tx ×t=rV,sVtopGenranxr,ysx×y

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctx class×t
1 vr setvarr
2 cvv classV
3 vs setvars
4 ctg classtopGen
5 vx setvarx
6 1 cv setvarr
7 vy setvary
8 3 cv setvars
9 5 cv setvarx
10 7 cv setvary
11 9 10 cxp classx×y
12 5 7 6 8 11 cmpo classxr,ysx×y
13 12 crn classranxr,ysx×y
14 13 4 cfv classtopGenranxr,ysx×y
15 1 3 2 2 14 cmpo classrV,sVtopGenranxr,ysx×y
16 0 15 wceq wff×t=rV,sVtopGenranxr,ysx×y