Metamath Proof Explorer


Theorem cntzcmnf

Description: Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses cntzcmnf.b
|- B = ( Base ` G )
cntzcmnf.z
|- Z = ( Cntz ` G )
cntzcmnf.g
|- ( ph -> G e. CMnd )
cntzcmnf.f
|- ( ph -> F : A --> B )
Assertion cntzcmnf
|- ( ph -> ran F C_ ( Z ` ran F ) )

Proof

Step Hyp Ref Expression
1 cntzcmnf.b
 |-  B = ( Base ` G )
2 cntzcmnf.z
 |-  Z = ( Cntz ` G )
3 cntzcmnf.g
 |-  ( ph -> G e. CMnd )
4 cntzcmnf.f
 |-  ( ph -> F : A --> B )
5 4 frnd
 |-  ( ph -> ran F C_ B )
6 1 2 cntzcmn
 |-  ( ( G e. CMnd /\ ran F C_ B ) -> ( Z ` ran F ) = B )
7 3 5 6 syl2anc
 |-  ( ph -> ( Z ` ran F ) = B )
8 5 7 sseqtrrd
 |-  ( ph -> ran F C_ ( Z ` ran F ) )