Description: Discharge the centralizer assumption in a commutative monoid. (Contributed by Mario Carneiro, 24-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cntzcmnf.b | |- B = ( Base ` G ) |
|
cntzcmnf.z | |- Z = ( Cntz ` G ) |
||
cntzcmnf.g | |- ( ph -> G e. CMnd ) |
||
cntzcmnf.f | |- ( ph -> F : A --> B ) |
||
Assertion | cntzcmnf | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzcmnf.b | |- B = ( Base ` G ) |
|
2 | cntzcmnf.z | |- Z = ( Cntz ` G ) |
|
3 | cntzcmnf.g | |- ( ph -> G e. CMnd ) |
|
4 | cntzcmnf.f | |- ( ph -> F : A --> B ) |
|
5 | 4 | frnd | |- ( ph -> ran F C_ B ) |
6 | 1 2 | cntzcmn | |- ( ( G e. CMnd /\ ran F C_ B ) -> ( Z ` ran F ) = B ) |
7 | 3 5 6 | syl2anc | |- ( ph -> ( Z ` ran F ) = B ) |
8 | 5 7 | sseqtrrd | |- ( ph -> ran F C_ ( Z ` ran F ) ) |