Description: The image of converse epsilon. (Contributed by Peter Mazsa, 22-Mar-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvepima | |- ( A e. V -> ( `' _E " A ) = U. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvepresex | |- ( A e. V -> ( `' _E |` A ) e. _V ) |
|
2 | uniqsALTV | |- ( ( `' _E |` A ) e. _V -> U. ( A /. `' _E ) = ( `' _E " A ) ) |
|
3 | 1 2 | syl | |- ( A e. V -> U. ( A /. `' _E ) = ( `' _E " A ) ) |
4 | qsid | |- ( A /. `' _E ) = A |
|
5 | 4 | unieqi | |- U. ( A /. `' _E ) = U. A |
6 | 3 5 | eqtr3di | |- ( A e. V -> ( `' _E " A ) = U. A ) |