Description: The image of converse epsilon. (Contributed by Peter Mazsa, 22-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvepima | |- ( A e. V -> ( `' _E " A ) = U. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvepresex | |- ( A e. V -> ( `' _E |` A ) e. _V ) |
|
| 2 | uniqsALTV | |- ( ( `' _E |` A ) e. _V -> U. ( A /. `' _E ) = ( `' _E " A ) ) |
|
| 3 | 1 2 | syl | |- ( A e. V -> U. ( A /. `' _E ) = ( `' _E " A ) ) |
| 4 | qsid | |- ( A /. `' _E ) = A |
|
| 5 | 4 | unieqi | |- U. ( A /. `' _E ) = U. A |
| 6 | 3 5 | eqtr3di | |- ( A e. V -> ( `' _E " A ) = U. A ) |