Description: The image of converse epsilon. (Contributed by Peter Mazsa, 22-Mar-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | cnvepima | ⊢ ( 𝐴 ∈ 𝑉 → ( ◡ E “ 𝐴 ) = ∪ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvepresex | ⊢ ( 𝐴 ∈ 𝑉 → ( ◡ E ↾ 𝐴 ) ∈ V ) | |
2 | uniqsALTV | ⊢ ( ( ◡ E ↾ 𝐴 ) ∈ V → ∪ ( 𝐴 / ◡ E ) = ( ◡ E “ 𝐴 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ∪ ( 𝐴 / ◡ E ) = ( ◡ E “ 𝐴 ) ) |
4 | qsid | ⊢ ( 𝐴 / ◡ E ) = 𝐴 | |
5 | 4 | unieqi | ⊢ ∪ ( 𝐴 / ◡ E ) = ∪ 𝐴 |
6 | 3 5 | eqtr3di | ⊢ ( 𝐴 ∈ 𝑉 → ( ◡ E “ 𝐴 ) = ∪ 𝐴 ) |