Metamath Proof Explorer


Theorem cnvepima

Description: The image of converse epsilon. (Contributed by Peter Mazsa, 22-Mar-2023)

Ref Expression
Assertion cnvepima ( 𝐴𝑉 → ( E “ 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 cnvepresex ( 𝐴𝑉 → ( E ↾ 𝐴 ) ∈ V )
2 uniqsALTV ( ( E ↾ 𝐴 ) ∈ V → ( 𝐴 / E ) = ( E “ 𝐴 ) )
3 1 2 syl ( 𝐴𝑉 ( 𝐴 / E ) = ( E “ 𝐴 ) )
4 qsid ( 𝐴 / E ) = 𝐴
5 4 unieqi ( 𝐴 / E ) = 𝐴
6 3 5 eqtr3di ( 𝐴𝑉 → ( E “ 𝐴 ) = 𝐴 )