Description: Sufficient condition for the intersection relation to be a set. (Contributed by Peter Mazsa, 24-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | inex3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inex1g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ 𝐵 ) ∈ V ) | |
2 | inex2g | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐴 ∩ 𝐵 ) ∈ V ) | |
3 | 1 2 | jaoi | ⊢ ( ( 𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∩ 𝐵 ) ∈ V ) |