Metamath Proof Explorer


Theorem inxpex

Description: Sufficient condition for an intersection with a Cartesian product to be a set. (Contributed by Peter Mazsa, 10-May-2019)

Ref Expression
Assertion inxpex ( ( 𝑅𝑊 ∨ ( 𝐴𝑈𝐵𝑉 ) ) → ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ∈ V )

Proof

Step Hyp Ref Expression
1 inex1g ( 𝑅𝑊 → ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ∈ V )
2 xpexg ( ( 𝐴𝑈𝐵𝑉 ) → ( 𝐴 × 𝐵 ) ∈ V )
3 inex2g ( ( 𝐴 × 𝐵 ) ∈ V → ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ∈ V )
4 2 3 syl ( ( 𝐴𝑈𝐵𝑉 ) → ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ∈ V )
5 1 4 jaoi ( ( 𝑅𝑊 ∨ ( 𝐴𝑈𝐵𝑉 ) ) → ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ∈ V )