Description: Sufficient condition for an intersection with a Cartesian product to be a set. (Contributed by Peter Mazsa, 10-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | inxpex | ⊢ ( ( 𝑅 ∈ 𝑊 ∨ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inex1g | ⊢ ( 𝑅 ∈ 𝑊 → ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ∈ V ) | |
2 | xpexg | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 × 𝐵 ) ∈ V ) | |
3 | inex2g | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ∈ V ) | |
4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ∈ V ) |
5 | 1 4 | jaoi | ⊢ ( ( 𝑅 ∈ 𝑊 ∨ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ∈ V ) |