Metamath Proof Explorer


Theorem eqres

Description: Converting a class constant definition by restriction (like df-ers or ~? df-parts ) into a binary relation. (Contributed by Peter Mazsa, 1-Oct-2018)

Ref Expression
Hypothesis eqres.1 𝑅 = ( 𝑆𝐶 )
Assertion eqres ( 𝐵𝑉 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐴𝐶𝐴 𝑆 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 eqres.1 𝑅 = ( 𝑆𝐶 )
2 1 breqi ( 𝐴 𝑅 𝐵𝐴 ( 𝑆𝐶 ) 𝐵 )
3 brres ( 𝐵𝑉 → ( 𝐴 ( 𝑆𝐶 ) 𝐵 ↔ ( 𝐴𝐶𝐴 𝑆 𝐵 ) ) )
4 2 3 syl5bb ( 𝐵𝑉 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐴𝐶𝐴 𝑆 𝐵 ) ) )