Description: Converting a class constant definition by restriction (like df-ers or ~? df-parts ) into a binary relation. (Contributed by Peter Mazsa, 1-Oct-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | eqres.1 | |- R = ( S |` C ) |
|
Assertion | eqres | |- ( B e. V -> ( A R B <-> ( A e. C /\ A S B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqres.1 | |- R = ( S |` C ) |
|
2 | 1 | breqi | |- ( A R B <-> A ( S |` C ) B ) |
3 | brres | |- ( B e. V -> ( A ( S |` C ) B <-> ( A e. C /\ A S B ) ) ) |
|
4 | 2 3 | syl5bb | |- ( B e. V -> ( A R B <-> ( A e. C /\ A S B ) ) ) |