Metamath Proof Explorer


Theorem eqres

Description: Converting a class constant definition by restriction (like df-ers or ~? df-parts ) into a binary relation. (Contributed by Peter Mazsa, 1-Oct-2018)

Ref Expression
Hypothesis eqres.1
|- R = ( S |` C )
Assertion eqres
|- ( B e. V -> ( A R B <-> ( A e. C /\ A S B ) ) )

Proof

Step Hyp Ref Expression
1 eqres.1
 |-  R = ( S |` C )
2 1 breqi
 |-  ( A R B <-> A ( S |` C ) B )
3 brres
 |-  ( B e. V -> ( A ( S |` C ) B <-> ( A e. C /\ A S B ) ) )
4 2 3 syl5bb
 |-  ( B e. V -> ( A R B <-> ( A e. C /\ A S B ) ) )