Metamath Proof Explorer


Theorem inxpex

Description: Sufficient condition for an intersection with a Cartesian product to be a set. (Contributed by Peter Mazsa, 10-May-2019)

Ref Expression
Assertion inxpex R W A U B V R A × B V

Proof

Step Hyp Ref Expression
1 inex1g R W R A × B V
2 xpexg A U B V A × B V
3 inex2g A × B V R A × B V
4 2 3 syl A U B V R A × B V
5 1 4 jaoi R W A U B V R A × B V