Step |
Hyp |
Ref |
Expression |
1 |
|
dfima3 |
|- ( `' R " ( _V \ { Z } ) ) = { x | E. y ( y e. ( _V \ { Z } ) /\ <. y , x >. e. `' R ) } |
2 |
|
eldifvsn |
|- ( y e. _V -> ( y e. ( _V \ { Z } ) <-> y =/= Z ) ) |
3 |
2
|
elv |
|- ( y e. ( _V \ { Z } ) <-> y =/= Z ) |
4 |
|
vex |
|- y e. _V |
5 |
|
vex |
|- x e. _V |
6 |
4 5
|
opelcnv |
|- ( <. y , x >. e. `' R <-> <. x , y >. e. R ) |
7 |
|
df-br |
|- ( x R y <-> <. x , y >. e. R ) |
8 |
6 7
|
bitr4i |
|- ( <. y , x >. e. `' R <-> x R y ) |
9 |
3 8
|
anbi12ci |
|- ( ( y e. ( _V \ { Z } ) /\ <. y , x >. e. `' R ) <-> ( x R y /\ y =/= Z ) ) |
10 |
9
|
exbii |
|- ( E. y ( y e. ( _V \ { Z } ) /\ <. y , x >. e. `' R ) <-> E. y ( x R y /\ y =/= Z ) ) |
11 |
10
|
abbii |
|- { x | E. y ( y e. ( _V \ { Z } ) /\ <. y , x >. e. `' R ) } = { x | E. y ( x R y /\ y =/= Z ) } |
12 |
1 11
|
eqtri |
|- ( `' R " ( _V \ { Z } ) ) = { x | E. y ( x R y /\ y =/= Z ) } |