Description: Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998) (Revised by Mario Carneiro, 26-Apr-2015) (Proof shortened by BJ, 12-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnvsn.1 | |- A e. _V |
|
cnvsn.2 | |- B e. _V |
||
Assertion | cnvsn | |- `' { <. A , B >. } = { <. B , A >. } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.1 | |- A e. _V |
|
2 | cnvsn.2 | |- B e. _V |
|
3 | cnvsng | |- ( ( A e. _V /\ B e. _V ) -> `' { <. A , B >. } = { <. B , A >. } ) |
|
4 | 1 2 3 | mp2an | |- `' { <. A , B >. } = { <. B , A >. } |