Metamath Proof Explorer


Theorem cnvsn

Description: Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998) (Revised by Mario Carneiro, 26-Apr-2015) (Proof shortened by BJ, 12-Feb-2022)

Ref Expression
Hypotheses cnvsn.1
|- A e. _V
cnvsn.2
|- B e. _V
Assertion cnvsn
|- `' { <. A , B >. } = { <. B , A >. }

Proof

Step Hyp Ref Expression
1 cnvsn.1
 |-  A e. _V
2 cnvsn.2
 |-  B e. _V
3 cnvsng
 |-  ( ( A e. _V /\ B e. _V ) -> `' { <. A , B >. } = { <. B , A >. } )
4 1 2 3 mp2an
 |-  `' { <. A , B >. } = { <. B , A >. }