Description: Converse of a singleton of an ordered pair. (Contributed by NM, 23-Jan-2015) (Proof shortened by BJ, 12-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvsng | |- ( ( A e. V /\ B e. W ) -> `' { <. A , B >. } = { <. B , A >. } ) | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnvcnvsn |  |-  `' `' { <. B , A >. } = `' { <. A , B >. } | 
						|
| 2 | relsnopg |  |-  ( ( B e. W /\ A e. V ) -> Rel { <. B , A >. } ) | 
						|
| 3 | 2 | ancoms |  |-  ( ( A e. V /\ B e. W ) -> Rel { <. B , A >. } ) | 
						
| 4 | dfrel2 |  |-  ( Rel { <. B , A >. } <-> `' `' { <. B , A >. } = { <. B , A >. } ) | 
						|
| 5 | 3 4 | sylib |  |-  ( ( A e. V /\ B e. W ) -> `' `' { <. B , A >. } = { <. B , A >. } ) | 
						
| 6 | 1 5 | eqtr3id |  |-  ( ( A e. V /\ B e. W ) -> `' { <. A , B >. } = { <. B , A >. } ) |