Metamath Proof Explorer


Theorem con1bii2

Description: A contraposition inference. (Contributed by ML, 18-Oct-2020)

Ref Expression
Hypothesis con1bii2.1
|- ( -. ph <-> ps )
Assertion con1bii2
|- ( ph <-> -. ps )

Proof

Step Hyp Ref Expression
1 con1bii2.1
 |-  ( -. ph <-> ps )
2 1 con1bii
 |-  ( -. ps <-> ph )
3 2 bicomi
 |-  ( ph <-> -. ps )