Metamath Proof Explorer


Theorem congid

Description: Every integer is congruent to itself mod every base. (Contributed by Stefan O'Rear, 1-Oct-2014)

Ref Expression
Assertion congid
|- ( ( A e. ZZ /\ B e. ZZ ) -> A || ( B - B ) )

Proof

Step Hyp Ref Expression
1 dvds0
 |-  ( A e. ZZ -> A || 0 )
2 1 adantr
 |-  ( ( A e. ZZ /\ B e. ZZ ) -> A || 0 )
3 zcn
 |-  ( B e. ZZ -> B e. CC )
4 3 adantl
 |-  ( ( A e. ZZ /\ B e. ZZ ) -> B e. CC )
5 4 subidd
 |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( B - B ) = 0 )
6 2 5 breqtrrd
 |-  ( ( A e. ZZ /\ B e. ZZ ) -> A || ( B - B ) )