Description: Every integer is congruent to itself mod every base. (Contributed by Stefan O'Rear, 1-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | congid | |- ( ( A e. ZZ /\ B e. ZZ ) -> A || ( B - B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvds0 | |- ( A e. ZZ -> A || 0 ) |
|
2 | 1 | adantr | |- ( ( A e. ZZ /\ B e. ZZ ) -> A || 0 ) |
3 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
4 | 3 | adantl | |- ( ( A e. ZZ /\ B e. ZZ ) -> B e. CC ) |
5 | 4 | subidd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( B - B ) = 0 ) |
6 | 2 5 | breqtrrd | |- ( ( A e. ZZ /\ B e. ZZ ) -> A || ( B - B ) ) |