Metamath Proof Explorer
Description: Assuming a, not b, and a implies b, there exists a proof that a is
false.) (Contributed by Jarvin Udandy, 29-Aug-2016)
|
|
Ref |
Expression |
|
Hypotheses |
conimpfalt.1 |
|- ph |
|
|
conimpfalt.2 |
|- -. ps |
|
|
conimpfalt.3 |
|- ( ph -> ps ) |
|
Assertion |
conimpfalt |
|- ( ph <-> F. ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
conimpfalt.1 |
|- ph |
| 2 |
|
conimpfalt.2 |
|- -. ps |
| 3 |
|
conimpfalt.3 |
|- ( ph -> ps ) |
| 4 |
3 2
|
aibnbaif |
|- ( ph <-> F. ) |