| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coprmdvds2d.1 |
|- ( ph -> K e. ZZ ) |
| 2 |
|
coprmdvds2d.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
coprmdvds2d.3 |
|- ( ph -> N e. ZZ ) |
| 4 |
|
coprmdvds2d.4 |
|- ( ph -> ( K gcd M ) = 1 ) |
| 5 |
|
coprmdvds2d.5 |
|- ( ph -> K || N ) |
| 6 |
|
coprmdvds2d.6 |
|- ( ph -> M || N ) |
| 7 |
1 2 3
|
3jca |
|- ( ph -> ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) ) |
| 8 |
7 4
|
jca |
|- ( ph -> ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) ) |
| 9 |
|
coprmdvds2 |
|- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( K gcd M ) = 1 ) -> ( ( K || N /\ M || N ) -> ( K x. M ) || N ) ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( ( K || N /\ M || N ) -> ( K x. M ) || N ) ) |
| 11 |
5 6 10
|
mp2and |
|- ( ph -> ( K x. M ) || N ) |