Metamath Proof Explorer


Theorem corclrtrcl

Description: Composition with the reflexive-transitive closure absorbs the reflexive closure. (Contributed by RP, 13-Jun-2020)

Ref Expression
Assertion corclrtrcl
|- ( r* o. t* ) = t*

Proof

Step Hyp Ref Expression
1 corcltrcl
 |-  ( r* o. t+ ) = t*
2 1 eqcomi
 |-  t* = ( r* o. t+ )
3 2 coeq2i
 |-  ( r* o. t* ) = ( r* o. ( r* o. t+ ) )
4 coass
 |-  ( ( r* o. r* ) o. t+ ) = ( r* o. ( r* o. t+ ) )
5 4 eqcomi
 |-  ( r* o. ( r* o. t+ ) ) = ( ( r* o. r* ) o. t+ )
6 corclrcl
 |-  ( r* o. r* ) = r*
7 6 coeq1i
 |-  ( ( r* o. r* ) o. t+ ) = ( r* o. t+ )
8 7 1 eqtri
 |-  ( ( r* o. r* ) o. t+ ) = t*
9 5 8 eqtri
 |-  ( r* o. ( r* o. t+ ) ) = t*
10 3 9 eqtri
 |-  ( r* o. t* ) = t*