Metamath Proof Explorer


Theorem corclrtrcl

Description: Composition with the reflexive-transitive closure absorbs the reflexive closure. (Contributed by RP, 13-Jun-2020)

Ref Expression
Assertion corclrtrcl ( r* ∘ t* ) = t*

Proof

Step Hyp Ref Expression
1 corcltrcl ( r* ∘ t+ ) = t*
2 1 eqcomi t* = ( r* ∘ t+ )
3 2 coeq2i ( r* ∘ t* ) = ( r* ∘ ( r* ∘ t+ ) )
4 coass ( ( r* ∘ r* ) ∘ t+ ) = ( r* ∘ ( r* ∘ t+ ) )
5 4 eqcomi ( r* ∘ ( r* ∘ t+ ) ) = ( ( r* ∘ r* ) ∘ t+ )
6 corclrcl ( r* ∘ r* ) = r*
7 6 coeq1i ( ( r* ∘ r* ) ∘ t+ ) = ( r* ∘ t+ )
8 7 1 eqtri ( ( r* ∘ r* ) ∘ t+ ) = t*
9 5 8 eqtri ( r* ∘ ( r* ∘ t+ ) ) = t*
10 3 9 eqtri ( r* ∘ t* ) = t*