| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dftrcl3 |
⊢ t+ = ( 𝑎 ∈ V ↦ ∪ 𝑖 ∈ ℕ ( 𝑎 ↑𝑟 𝑖 ) ) |
| 2 |
|
dfrcl4 |
⊢ r* = ( 𝑏 ∈ V ↦ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑏 ↑𝑟 𝑗 ) ) |
| 3 |
|
dfrtrcl3 |
⊢ t* = ( 𝑐 ∈ V ↦ ∪ 𝑘 ∈ ℕ0 ( 𝑐 ↑𝑟 𝑘 ) ) |
| 4 |
|
nnex |
⊢ ℕ ∈ V |
| 5 |
|
prex |
⊢ { 0 , 1 } ∈ V |
| 6 |
|
df-n0 |
⊢ ℕ0 = ( ℕ ∪ { 0 } ) |
| 7 |
|
df-pr |
⊢ { 0 , 1 } = ( { 0 } ∪ { 1 } ) |
| 8 |
7
|
equncomi |
⊢ { 0 , 1 } = ( { 1 } ∪ { 0 } ) |
| 9 |
8
|
uneq2i |
⊢ ( ℕ ∪ { 0 , 1 } ) = ( ℕ ∪ ( { 1 } ∪ { 0 } ) ) |
| 10 |
|
unass |
⊢ ( ( ℕ ∪ { 1 } ) ∪ { 0 } ) = ( ℕ ∪ ( { 1 } ∪ { 0 } ) ) |
| 11 |
|
1nn |
⊢ 1 ∈ ℕ |
| 12 |
|
snssi |
⊢ ( 1 ∈ ℕ → { 1 } ⊆ ℕ ) |
| 13 |
11 12
|
ax-mp |
⊢ { 1 } ⊆ ℕ |
| 14 |
|
ssequn2 |
⊢ ( { 1 } ⊆ ℕ ↔ ( ℕ ∪ { 1 } ) = ℕ ) |
| 15 |
13 14
|
mpbi |
⊢ ( ℕ ∪ { 1 } ) = ℕ |
| 16 |
15
|
uneq1i |
⊢ ( ( ℕ ∪ { 1 } ) ∪ { 0 } ) = ( ℕ ∪ { 0 } ) |
| 17 |
9 10 16
|
3eqtr2ri |
⊢ ( ℕ ∪ { 0 } ) = ( ℕ ∪ { 0 , 1 } ) |
| 18 |
6 17
|
eqtri |
⊢ ℕ0 = ( ℕ ∪ { 0 , 1 } ) |
| 19 |
|
oveq2 |
⊢ ( 𝑘 = 𝑖 → ( 𝑑 ↑𝑟 𝑘 ) = ( 𝑑 ↑𝑟 𝑖 ) ) |
| 20 |
19
|
cbviunv |
⊢ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) = ∪ 𝑖 ∈ ℕ ( 𝑑 ↑𝑟 𝑖 ) |
| 21 |
|
ss2iun |
⊢ ( ∀ 𝑖 ∈ ℕ ( 𝑑 ↑𝑟 𝑖 ) ⊆ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) → ∪ 𝑖 ∈ ℕ ( 𝑑 ↑𝑟 𝑖 ) ⊆ ∪ 𝑖 ∈ ℕ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ) |
| 22 |
|
1ex |
⊢ 1 ∈ V |
| 23 |
22
|
prid2 |
⊢ 1 ∈ { 0 , 1 } |
| 24 |
|
oveq2 |
⊢ ( 𝑗 = 1 → ( 𝑑 ↑𝑟 𝑗 ) = ( 𝑑 ↑𝑟 1 ) ) |
| 25 |
|
relexp1g |
⊢ ( 𝑑 ∈ V → ( 𝑑 ↑𝑟 1 ) = 𝑑 ) |
| 26 |
25
|
elv |
⊢ ( 𝑑 ↑𝑟 1 ) = 𝑑 |
| 27 |
24 26
|
eqtrdi |
⊢ ( 𝑗 = 1 → ( 𝑑 ↑𝑟 𝑗 ) = 𝑑 ) |
| 28 |
27
|
ssiun2s |
⊢ ( 1 ∈ { 0 , 1 } → 𝑑 ⊆ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ) |
| 29 |
23 28
|
ax-mp |
⊢ 𝑑 ⊆ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) |
| 30 |
29
|
a1i |
⊢ ( 𝑖 ∈ ℕ → 𝑑 ⊆ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ) |
| 31 |
|
ovex |
⊢ ( 𝑑 ↑𝑟 𝑗 ) ∈ V |
| 32 |
5 31
|
iunex |
⊢ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ∈ V |
| 33 |
32
|
a1i |
⊢ ( 𝑖 ∈ ℕ → ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ∈ V ) |
| 34 |
|
nnnn0 |
⊢ ( 𝑖 ∈ ℕ → 𝑖 ∈ ℕ0 ) |
| 35 |
30 33 34
|
relexpss1d |
⊢ ( 𝑖 ∈ ℕ → ( 𝑑 ↑𝑟 𝑖 ) ⊆ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ) |
| 36 |
21 35
|
mprg |
⊢ ∪ 𝑖 ∈ ℕ ( 𝑑 ↑𝑟 𝑖 ) ⊆ ∪ 𝑖 ∈ ℕ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) |
| 37 |
20 36
|
eqsstri |
⊢ ∪ 𝑘 ∈ ℕ ( 𝑑 ↑𝑟 𝑘 ) ⊆ ∪ 𝑖 ∈ ℕ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) |
| 38 |
|
oveq2 |
⊢ ( 𝑖 = 1 → ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) ) |
| 39 |
|
relexp1g |
⊢ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ∈ V → ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) = ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ) |
| 40 |
32 39
|
ax-mp |
⊢ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) = ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) |
| 41 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑑 ↑𝑟 𝑗 ) = ( 𝑑 ↑𝑟 𝑘 ) ) |
| 42 |
41
|
cbviunv |
⊢ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) = ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) |
| 43 |
40 42
|
eqtri |
⊢ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 1 ) = ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) |
| 44 |
38 43
|
eqtrdi |
⊢ ( 𝑖 = 1 → ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ) |
| 45 |
44
|
ssiun2s |
⊢ ( 1 ∈ ℕ → ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ⊆ ∪ 𝑖 ∈ ℕ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ) |
| 46 |
11 45
|
ax-mp |
⊢ ∪ 𝑘 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑘 ) ⊆ ∪ 𝑖 ∈ ℕ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) |
| 47 |
|
iunss |
⊢ ( ∪ 𝑖 ∈ ℕ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ↔ ∀ 𝑖 ∈ ℕ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) |
| 48 |
|
iuneq1 |
⊢ ( { 0 , 1 } = ( { 0 } ∪ { 1 } ) → ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) = ∪ 𝑗 ∈ ( { 0 } ∪ { 1 } ) ( 𝑑 ↑𝑟 𝑗 ) ) |
| 49 |
7 48
|
ax-mp |
⊢ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) = ∪ 𝑗 ∈ ( { 0 } ∪ { 1 } ) ( 𝑑 ↑𝑟 𝑗 ) |
| 50 |
|
iunxun |
⊢ ∪ 𝑗 ∈ ( { 0 } ∪ { 1 } ) ( 𝑑 ↑𝑟 𝑗 ) = ( ∪ 𝑗 ∈ { 0 } ( 𝑑 ↑𝑟 𝑗 ) ∪ ∪ 𝑗 ∈ { 1 } ( 𝑑 ↑𝑟 𝑗 ) ) |
| 51 |
|
c0ex |
⊢ 0 ∈ V |
| 52 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( 𝑑 ↑𝑟 𝑗 ) = ( 𝑑 ↑𝑟 0 ) ) |
| 53 |
51 52
|
iunxsn |
⊢ ∪ 𝑗 ∈ { 0 } ( 𝑑 ↑𝑟 𝑗 ) = ( 𝑑 ↑𝑟 0 ) |
| 54 |
22 24
|
iunxsn |
⊢ ∪ 𝑗 ∈ { 1 } ( 𝑑 ↑𝑟 𝑗 ) = ( 𝑑 ↑𝑟 1 ) |
| 55 |
53 54
|
uneq12i |
⊢ ( ∪ 𝑗 ∈ { 0 } ( 𝑑 ↑𝑟 𝑗 ) ∪ ∪ 𝑗 ∈ { 1 } ( 𝑑 ↑𝑟 𝑗 ) ) = ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) |
| 56 |
49 50 55
|
3eqtri |
⊢ ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) = ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) |
| 57 |
56
|
oveq1i |
⊢ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) = ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑖 ) |
| 58 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑥 ) = ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 1 ) ) |
| 59 |
58
|
sseq1d |
⊢ ( 𝑥 = 1 → ( ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑥 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ↔ ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 1 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) ) |
| 60 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑥 ) = ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑦 ) ) |
| 61 |
60
|
sseq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑥 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ↔ ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) ) |
| 62 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑥 ) = ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 ( 𝑦 + 1 ) ) ) |
| 63 |
62
|
sseq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑥 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ↔ ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) ) |
| 64 |
|
oveq2 |
⊢ ( 𝑥 = 𝑖 → ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑥 ) = ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑖 ) ) |
| 65 |
64
|
sseq1d |
⊢ ( 𝑥 = 𝑖 → ( ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑥 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ↔ ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) ) |
| 66 |
|
ovex |
⊢ ( 𝑑 ↑𝑟 0 ) ∈ V |
| 67 |
|
ovex |
⊢ ( 𝑑 ↑𝑟 1 ) ∈ V |
| 68 |
66 67
|
unex |
⊢ ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ∈ V |
| 69 |
|
relexp1g |
⊢ ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ∈ V → ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 1 ) = ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ) |
| 70 |
68 69
|
ax-mp |
⊢ ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 1 ) = ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) |
| 71 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 72 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝑑 ↑𝑟 𝑘 ) = ( 𝑑 ↑𝑟 0 ) ) |
| 73 |
72
|
ssiun2s |
⊢ ( 0 ∈ ℕ0 → ( 𝑑 ↑𝑟 0 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) |
| 74 |
71 73
|
ax-mp |
⊢ ( 𝑑 ↑𝑟 0 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) |
| 75 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 76 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 𝑑 ↑𝑟 𝑘 ) = ( 𝑑 ↑𝑟 1 ) ) |
| 77 |
76
|
ssiun2s |
⊢ ( 1 ∈ ℕ0 → ( 𝑑 ↑𝑟 1 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) |
| 78 |
75 77
|
ax-mp |
⊢ ( 𝑑 ↑𝑟 1 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) |
| 79 |
74 78
|
unssi |
⊢ ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) |
| 80 |
70 79
|
eqsstri |
⊢ ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 1 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) |
| 81 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) → 𝑦 ∈ ℕ ) |
| 82 |
|
relexpsucnnr |
⊢ ( ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ∈ V ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑦 ) ∘ ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ) ) |
| 83 |
68 81 82
|
sylancr |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) → ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 ( 𝑦 + 1 ) ) = ( ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑦 ) ∘ ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ) ) |
| 84 |
|
coss1 |
⊢ ( ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) → ( ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑦 ) ∘ ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ) ⊆ ( ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ∘ ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ) ) |
| 85 |
|
coundi |
⊢ ( ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ∘ ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ) = ( ( ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 0 ) ) ∪ ( ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ) |
| 86 |
|
relexp0g |
⊢ ( 𝑑 ∈ V → ( 𝑑 ↑𝑟 0 ) = ( I ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) ) |
| 87 |
86
|
elv |
⊢ ( 𝑑 ↑𝑟 0 ) = ( I ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) |
| 88 |
87
|
coeq2i |
⊢ ( ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 0 ) ) = ( ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ∘ ( I ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) ) |
| 89 |
|
coiun1 |
⊢ ( ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ∘ ( I ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) ) = ∪ 𝑘 ∈ ℕ0 ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( I ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) ) |
| 90 |
|
coires1 |
⊢ ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( I ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) ) = ( ( 𝑑 ↑𝑟 𝑘 ) ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) |
| 91 |
90
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( I ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) ) = ( ( 𝑑 ↑𝑟 𝑘 ) ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) ) |
| 92 |
91
|
iuneq2i |
⊢ ∪ 𝑘 ∈ ℕ0 ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( I ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) ) = ∪ 𝑘 ∈ ℕ0 ( ( 𝑑 ↑𝑟 𝑘 ) ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) |
| 93 |
88 89 92
|
3eqtri |
⊢ ( ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 0 ) ) = ∪ 𝑘 ∈ ℕ0 ( ( 𝑑 ↑𝑟 𝑘 ) ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) |
| 94 |
|
ss2iun |
⊢ ( ∀ 𝑘 ∈ ℕ0 ( ( 𝑑 ↑𝑟 𝑘 ) ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) ⊆ ( 𝑑 ↑𝑟 𝑘 ) → ∪ 𝑘 ∈ ℕ0 ( ( 𝑑 ↑𝑟 𝑘 ) ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) |
| 95 |
|
resss |
⊢ ( ( 𝑑 ↑𝑟 𝑘 ) ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) ⊆ ( 𝑑 ↑𝑟 𝑘 ) |
| 96 |
95
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑑 ↑𝑟 𝑘 ) ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) ⊆ ( 𝑑 ↑𝑟 𝑘 ) ) |
| 97 |
94 96
|
mprg |
⊢ ∪ 𝑘 ∈ ℕ0 ( ( 𝑑 ↑𝑟 𝑘 ) ↾ ( dom 𝑑 ∪ ran 𝑑 ) ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) |
| 98 |
93 97
|
eqsstri |
⊢ ( ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 0 ) ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) |
| 99 |
|
coiun1 |
⊢ ( ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) = ∪ 𝑘 ∈ ℕ0 ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) |
| 100 |
|
iunss2 |
⊢ ( ∀ 𝑘 ∈ ℕ0 ∃ 𝑖 ∈ ℕ0 ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ( 𝑑 ↑𝑟 𝑖 ) → ∪ 𝑘 ∈ ℕ0 ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ∪ 𝑖 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑖 ) ) |
| 101 |
|
peano2nn0 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 102 |
|
sbcel1v |
⊢ ( [ ( 𝑘 + 1 ) / 𝑖 ] 𝑖 ∈ ℕ0 ↔ ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 103 |
101 102
|
sylibr |
⊢ ( 𝑘 ∈ ℕ0 → [ ( 𝑘 + 1 ) / 𝑖 ] 𝑖 ∈ ℕ0 ) |
| 104 |
|
vex |
⊢ 𝑑 ∈ V |
| 105 |
|
relexpaddss |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 𝑑 ∈ V ) → ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ( 𝑑 ↑𝑟 ( 𝑘 + 1 ) ) ) |
| 106 |
75 104 105
|
mp3an23 |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ( 𝑑 ↑𝑟 ( 𝑘 + 1 ) ) ) |
| 107 |
|
ovex |
⊢ ( 𝑘 + 1 ) ∈ V |
| 108 |
|
csbconstg |
⊢ ( ( 𝑘 + 1 ) ∈ V → ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) = ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ) |
| 109 |
107 108
|
ax-mp |
⊢ ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) = ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) |
| 110 |
|
csbov2g |
⊢ ( ( 𝑘 + 1 ) ∈ V → ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ ( 𝑑 ↑𝑟 𝑖 ) = ( 𝑑 ↑𝑟 ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ 𝑖 ) ) |
| 111 |
|
csbvarg |
⊢ ( ( 𝑘 + 1 ) ∈ V → ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ 𝑖 = ( 𝑘 + 1 ) ) |
| 112 |
111
|
oveq2d |
⊢ ( ( 𝑘 + 1 ) ∈ V → ( 𝑑 ↑𝑟 ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ 𝑖 ) = ( 𝑑 ↑𝑟 ( 𝑘 + 1 ) ) ) |
| 113 |
110 112
|
eqtrd |
⊢ ( ( 𝑘 + 1 ) ∈ V → ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ ( 𝑑 ↑𝑟 𝑖 ) = ( 𝑑 ↑𝑟 ( 𝑘 + 1 ) ) ) |
| 114 |
107 113
|
ax-mp |
⊢ ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ ( 𝑑 ↑𝑟 𝑖 ) = ( 𝑑 ↑𝑟 ( 𝑘 + 1 ) ) |
| 115 |
106 109 114
|
3sstr4g |
⊢ ( 𝑘 ∈ ℕ0 → ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ ( 𝑑 ↑𝑟 𝑖 ) ) |
| 116 |
|
sbcssg |
⊢ ( ( 𝑘 + 1 ) ∈ V → ( [ ( 𝑘 + 1 ) / 𝑖 ] ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ( 𝑑 ↑𝑟 𝑖 ) ↔ ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ ( 𝑑 ↑𝑟 𝑖 ) ) ) |
| 117 |
107 116
|
ax-mp |
⊢ ( [ ( 𝑘 + 1 ) / 𝑖 ] ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ( 𝑑 ↑𝑟 𝑖 ) ↔ ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ⦋ ( 𝑘 + 1 ) / 𝑖 ⦌ ( 𝑑 ↑𝑟 𝑖 ) ) |
| 118 |
115 117
|
sylibr |
⊢ ( 𝑘 ∈ ℕ0 → [ ( 𝑘 + 1 ) / 𝑖 ] ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ( 𝑑 ↑𝑟 𝑖 ) ) |
| 119 |
|
sbcan |
⊢ ( [ ( 𝑘 + 1 ) / 𝑖 ] ( 𝑖 ∈ ℕ0 ∧ ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ( 𝑑 ↑𝑟 𝑖 ) ) ↔ ( [ ( 𝑘 + 1 ) / 𝑖 ] 𝑖 ∈ ℕ0 ∧ [ ( 𝑘 + 1 ) / 𝑖 ] ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ( 𝑑 ↑𝑟 𝑖 ) ) ) |
| 120 |
103 118 119
|
sylanbrc |
⊢ ( 𝑘 ∈ ℕ0 → [ ( 𝑘 + 1 ) / 𝑖 ] ( 𝑖 ∈ ℕ0 ∧ ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ( 𝑑 ↑𝑟 𝑖 ) ) ) |
| 121 |
120
|
spesbcd |
⊢ ( 𝑘 ∈ ℕ0 → ∃ 𝑖 ( 𝑖 ∈ ℕ0 ∧ ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ( 𝑑 ↑𝑟 𝑖 ) ) ) |
| 122 |
|
df-rex |
⊢ ( ∃ 𝑖 ∈ ℕ0 ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ( 𝑑 ↑𝑟 𝑖 ) ↔ ∃ 𝑖 ( 𝑖 ∈ ℕ0 ∧ ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ( 𝑑 ↑𝑟 𝑖 ) ) ) |
| 123 |
121 122
|
sylibr |
⊢ ( 𝑘 ∈ ℕ0 → ∃ 𝑖 ∈ ℕ0 ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ( 𝑑 ↑𝑟 𝑖 ) ) |
| 124 |
100 123
|
mprg |
⊢ ∪ 𝑘 ∈ ℕ0 ( ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ∪ 𝑖 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑖 ) |
| 125 |
99 124
|
eqsstri |
⊢ ( ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ∪ 𝑖 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑖 ) |
| 126 |
|
oveq2 |
⊢ ( 𝑖 = 𝑘 → ( 𝑑 ↑𝑟 𝑖 ) = ( 𝑑 ↑𝑟 𝑘 ) ) |
| 127 |
126
|
cbviunv |
⊢ ∪ 𝑖 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑖 ) = ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) |
| 128 |
125 127
|
sseqtri |
⊢ ( ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) |
| 129 |
98 128
|
unssi |
⊢ ( ( ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 0 ) ) ∪ ( ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ∘ ( 𝑑 ↑𝑟 1 ) ) ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) |
| 130 |
85 129
|
eqsstri |
⊢ ( ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ∘ ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) |
| 131 |
84 130
|
sstrdi |
⊢ ( ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) → ( ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑦 ) ∘ ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) |
| 132 |
131
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) → ( ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑦 ) ∘ ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) |
| 133 |
83 132
|
eqsstrd |
⊢ ( ( 𝑦 ∈ ℕ ∧ ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) → ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) |
| 134 |
133
|
ex |
⊢ ( 𝑦 ∈ ℕ → ( ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑦 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) → ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) ) |
| 135 |
59 61 63 65 80 134
|
nnind |
⊢ ( 𝑖 ∈ ℕ → ( ( ( 𝑑 ↑𝑟 0 ) ∪ ( 𝑑 ↑𝑟 1 ) ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) |
| 136 |
57 135
|
eqsstrid |
⊢ ( 𝑖 ∈ ℕ → ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) ) |
| 137 |
47 136
|
mprgbir |
⊢ ∪ 𝑖 ∈ ℕ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) |
| 138 |
|
iuneq1 |
⊢ ( ℕ0 = ( ℕ ∪ { 0 , 1 } ) → ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) = ∪ 𝑘 ∈ ( ℕ ∪ { 0 , 1 } ) ( 𝑑 ↑𝑟 𝑘 ) ) |
| 139 |
18 138
|
ax-mp |
⊢ ∪ 𝑘 ∈ ℕ0 ( 𝑑 ↑𝑟 𝑘 ) = ∪ 𝑘 ∈ ( ℕ ∪ { 0 , 1 } ) ( 𝑑 ↑𝑟 𝑘 ) |
| 140 |
137 139
|
sseqtri |
⊢ ∪ 𝑖 ∈ ℕ ( ∪ 𝑗 ∈ { 0 , 1 } ( 𝑑 ↑𝑟 𝑗 ) ↑𝑟 𝑖 ) ⊆ ∪ 𝑘 ∈ ( ℕ ∪ { 0 , 1 } ) ( 𝑑 ↑𝑟 𝑘 ) |
| 141 |
1 2 3 4 5 18 37 46 140
|
comptiunov2i |
⊢ ( t+ ∘ r* ) = t* |