| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relexpss1d.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| 2 |
|
relexpss1d.b |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 3 |
|
relexpss1d.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 4 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 5 |
3 4
|
sylib |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 𝐴 ↑𝑟 𝑥 ) = ( 𝐴 ↑𝑟 1 ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 𝐵 ↑𝑟 𝑥 ) = ( 𝐵 ↑𝑟 1 ) ) |
| 8 |
6 7
|
sseq12d |
⊢ ( 𝑥 = 1 → ( ( 𝐴 ↑𝑟 𝑥 ) ⊆ ( 𝐵 ↑𝑟 𝑥 ) ↔ ( 𝐴 ↑𝑟 1 ) ⊆ ( 𝐵 ↑𝑟 1 ) ) ) |
| 9 |
8
|
imbi2d |
⊢ ( 𝑥 = 1 → ( ( 𝜑 → ( 𝐴 ↑𝑟 𝑥 ) ⊆ ( 𝐵 ↑𝑟 𝑥 ) ) ↔ ( 𝜑 → ( 𝐴 ↑𝑟 1 ) ⊆ ( 𝐵 ↑𝑟 1 ) ) ) ) |
| 10 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑𝑟 𝑥 ) = ( 𝐴 ↑𝑟 𝑦 ) ) |
| 11 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ↑𝑟 𝑥 ) = ( 𝐵 ↑𝑟 𝑦 ) ) |
| 12 |
10 11
|
sseq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ↑𝑟 𝑥 ) ⊆ ( 𝐵 ↑𝑟 𝑥 ) ↔ ( 𝐴 ↑𝑟 𝑦 ) ⊆ ( 𝐵 ↑𝑟 𝑦 ) ) ) |
| 13 |
12
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( 𝐴 ↑𝑟 𝑥 ) ⊆ ( 𝐵 ↑𝑟 𝑥 ) ) ↔ ( 𝜑 → ( 𝐴 ↑𝑟 𝑦 ) ⊆ ( 𝐵 ↑𝑟 𝑦 ) ) ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐴 ↑𝑟 𝑥 ) = ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐵 ↑𝑟 𝑥 ) = ( 𝐵 ↑𝑟 ( 𝑦 + 1 ) ) ) |
| 16 |
14 15
|
sseq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐴 ↑𝑟 𝑥 ) ⊆ ( 𝐵 ↑𝑟 𝑥 ) ↔ ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ( 𝐵 ↑𝑟 ( 𝑦 + 1 ) ) ) ) |
| 17 |
16
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝜑 → ( 𝐴 ↑𝑟 𝑥 ) ⊆ ( 𝐵 ↑𝑟 𝑥 ) ) ↔ ( 𝜑 → ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ( 𝐵 ↑𝑟 ( 𝑦 + 1 ) ) ) ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐴 ↑𝑟 𝑥 ) = ( 𝐴 ↑𝑟 𝑁 ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐵 ↑𝑟 𝑥 ) = ( 𝐵 ↑𝑟 𝑁 ) ) |
| 20 |
18 19
|
sseq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐴 ↑𝑟 𝑥 ) ⊆ ( 𝐵 ↑𝑟 𝑥 ) ↔ ( 𝐴 ↑𝑟 𝑁 ) ⊆ ( 𝐵 ↑𝑟 𝑁 ) ) ) |
| 21 |
20
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( 𝐴 ↑𝑟 𝑥 ) ⊆ ( 𝐵 ↑𝑟 𝑥 ) ) ↔ ( 𝜑 → ( 𝐴 ↑𝑟 𝑁 ) ⊆ ( 𝐵 ↑𝑟 𝑁 ) ) ) ) |
| 22 |
2 1
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 23 |
22
|
relexp1d |
⊢ ( 𝜑 → ( 𝐴 ↑𝑟 1 ) = 𝐴 ) |
| 24 |
2
|
relexp1d |
⊢ ( 𝜑 → ( 𝐵 ↑𝑟 1 ) = 𝐵 ) |
| 25 |
1 23 24
|
3sstr4d |
⊢ ( 𝜑 → ( 𝐴 ↑𝑟 1 ) ⊆ ( 𝐵 ↑𝑟 1 ) ) |
| 26 |
|
simp3 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝜑 ∧ ( 𝐴 ↑𝑟 𝑦 ) ⊆ ( 𝐵 ↑𝑟 𝑦 ) ) → ( 𝐴 ↑𝑟 𝑦 ) ⊆ ( 𝐵 ↑𝑟 𝑦 ) ) |
| 27 |
1
|
3ad2ant2 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝜑 ∧ ( 𝐴 ↑𝑟 𝑦 ) ⊆ ( 𝐵 ↑𝑟 𝑦 ) ) → 𝐴 ⊆ 𝐵 ) |
| 28 |
26 27
|
coss12d |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝜑 ∧ ( 𝐴 ↑𝑟 𝑦 ) ⊆ ( 𝐵 ↑𝑟 𝑦 ) ) → ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ⊆ ( ( 𝐵 ↑𝑟 𝑦 ) ∘ 𝐵 ) ) |
| 29 |
22
|
3ad2ant2 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝜑 ∧ ( 𝐴 ↑𝑟 𝑦 ) ⊆ ( 𝐵 ↑𝑟 𝑦 ) ) → 𝐴 ∈ V ) |
| 30 |
|
simp1 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝜑 ∧ ( 𝐴 ↑𝑟 𝑦 ) ⊆ ( 𝐵 ↑𝑟 𝑦 ) ) → 𝑦 ∈ ℕ ) |
| 31 |
|
relexpsucnnr |
⊢ ( ( 𝐴 ∈ V ∧ 𝑦 ∈ ℕ ) → ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) = ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ) |
| 32 |
29 30 31
|
syl2anc |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝜑 ∧ ( 𝐴 ↑𝑟 𝑦 ) ⊆ ( 𝐵 ↑𝑟 𝑦 ) ) → ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) = ( ( 𝐴 ↑𝑟 𝑦 ) ∘ 𝐴 ) ) |
| 33 |
2
|
3ad2ant2 |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝜑 ∧ ( 𝐴 ↑𝑟 𝑦 ) ⊆ ( 𝐵 ↑𝑟 𝑦 ) ) → 𝐵 ∈ V ) |
| 34 |
|
relexpsucnnr |
⊢ ( ( 𝐵 ∈ V ∧ 𝑦 ∈ ℕ ) → ( 𝐵 ↑𝑟 ( 𝑦 + 1 ) ) = ( ( 𝐵 ↑𝑟 𝑦 ) ∘ 𝐵 ) ) |
| 35 |
33 30 34
|
syl2anc |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝜑 ∧ ( 𝐴 ↑𝑟 𝑦 ) ⊆ ( 𝐵 ↑𝑟 𝑦 ) ) → ( 𝐵 ↑𝑟 ( 𝑦 + 1 ) ) = ( ( 𝐵 ↑𝑟 𝑦 ) ∘ 𝐵 ) ) |
| 36 |
28 32 35
|
3sstr4d |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝜑 ∧ ( 𝐴 ↑𝑟 𝑦 ) ⊆ ( 𝐵 ↑𝑟 𝑦 ) ) → ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ( 𝐵 ↑𝑟 ( 𝑦 + 1 ) ) ) |
| 37 |
36
|
3exp |
⊢ ( 𝑦 ∈ ℕ → ( 𝜑 → ( ( 𝐴 ↑𝑟 𝑦 ) ⊆ ( 𝐵 ↑𝑟 𝑦 ) → ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ( 𝐵 ↑𝑟 ( 𝑦 + 1 ) ) ) ) ) |
| 38 |
37
|
a2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝜑 → ( 𝐴 ↑𝑟 𝑦 ) ⊆ ( 𝐵 ↑𝑟 𝑦 ) ) → ( 𝜑 → ( 𝐴 ↑𝑟 ( 𝑦 + 1 ) ) ⊆ ( 𝐵 ↑𝑟 ( 𝑦 + 1 ) ) ) ) ) |
| 39 |
9 13 17 21 25 38
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( 𝜑 → ( 𝐴 ↑𝑟 𝑁 ) ⊆ ( 𝐵 ↑𝑟 𝑁 ) ) ) |
| 40 |
|
simpr |
⊢ ( ( 𝑁 = 0 ∧ 𝜑 ) → 𝜑 ) |
| 41 |
|
dmss |
⊢ ( 𝐴 ⊆ 𝐵 → dom 𝐴 ⊆ dom 𝐵 ) |
| 42 |
|
rnss |
⊢ ( 𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵 ) |
| 43 |
41 42
|
jca |
⊢ ( 𝐴 ⊆ 𝐵 → ( dom 𝐴 ⊆ dom 𝐵 ∧ ran 𝐴 ⊆ ran 𝐵 ) ) |
| 44 |
|
unss12 |
⊢ ( ( dom 𝐴 ⊆ dom 𝐵 ∧ ran 𝐴 ⊆ ran 𝐵 ) → ( dom 𝐴 ∪ ran 𝐴 ) ⊆ ( dom 𝐵 ∪ ran 𝐵 ) ) |
| 45 |
1 43 44
|
3syl |
⊢ ( 𝜑 → ( dom 𝐴 ∪ ran 𝐴 ) ⊆ ( dom 𝐵 ∪ ran 𝐵 ) ) |
| 46 |
|
ssres2 |
⊢ ( ( dom 𝐴 ∪ ran 𝐴 ) ⊆ ( dom 𝐵 ∪ ran 𝐵 ) → ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ⊆ ( I ↾ ( dom 𝐵 ∪ ran 𝐵 ) ) ) |
| 47 |
40 45 46
|
3syl |
⊢ ( ( 𝑁 = 0 ∧ 𝜑 ) → ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ⊆ ( I ↾ ( dom 𝐵 ∪ ran 𝐵 ) ) ) |
| 48 |
|
simpl |
⊢ ( ( 𝑁 = 0 ∧ 𝜑 ) → 𝑁 = 0 ) |
| 49 |
48
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝜑 ) → ( 𝐴 ↑𝑟 𝑁 ) = ( 𝐴 ↑𝑟 0 ) ) |
| 50 |
|
relexp0g |
⊢ ( 𝐴 ∈ V → ( 𝐴 ↑𝑟 0 ) = ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) |
| 51 |
40 22 50
|
3syl |
⊢ ( ( 𝑁 = 0 ∧ 𝜑 ) → ( 𝐴 ↑𝑟 0 ) = ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) |
| 52 |
49 51
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝜑 ) → ( 𝐴 ↑𝑟 𝑁 ) = ( I ↾ ( dom 𝐴 ∪ ran 𝐴 ) ) ) |
| 53 |
48
|
oveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝜑 ) → ( 𝐵 ↑𝑟 𝑁 ) = ( 𝐵 ↑𝑟 0 ) ) |
| 54 |
|
relexp0g |
⊢ ( 𝐵 ∈ V → ( 𝐵 ↑𝑟 0 ) = ( I ↾ ( dom 𝐵 ∪ ran 𝐵 ) ) ) |
| 55 |
40 2 54
|
3syl |
⊢ ( ( 𝑁 = 0 ∧ 𝜑 ) → ( 𝐵 ↑𝑟 0 ) = ( I ↾ ( dom 𝐵 ∪ ran 𝐵 ) ) ) |
| 56 |
53 55
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝜑 ) → ( 𝐵 ↑𝑟 𝑁 ) = ( I ↾ ( dom 𝐵 ∪ ran 𝐵 ) ) ) |
| 57 |
47 52 56
|
3sstr4d |
⊢ ( ( 𝑁 = 0 ∧ 𝜑 ) → ( 𝐴 ↑𝑟 𝑁 ) ⊆ ( 𝐵 ↑𝑟 𝑁 ) ) |
| 58 |
57
|
ex |
⊢ ( 𝑁 = 0 → ( 𝜑 → ( 𝐴 ↑𝑟 𝑁 ) ⊆ ( 𝐵 ↑𝑟 𝑁 ) ) ) |
| 59 |
39 58
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 𝜑 → ( 𝐴 ↑𝑟 𝑁 ) ⊆ ( 𝐵 ↑𝑟 𝑁 ) ) ) |
| 60 |
5 59
|
mpcom |
⊢ ( 𝜑 → ( 𝐴 ↑𝑟 𝑁 ) ⊆ ( 𝐵 ↑𝑟 𝑁 ) ) |