Metamath Proof Explorer


Theorem comptiunov2i

Description: The composition two indexed unions is sometimes a similar indexed union. (Contributed by RP, 10-Jun-2020)

Ref Expression
Hypotheses comptiunov2.x 𝑋 = ( 𝑎 ∈ V ↦ 𝑖𝐼 ( 𝑎 𝑖 ) )
comptiunov2.y 𝑌 = ( 𝑏 ∈ V ↦ 𝑗𝐽 ( 𝑏 𝑗 ) )
comptiunov2.z 𝑍 = ( 𝑐 ∈ V ↦ 𝑘𝐾 ( 𝑐 𝑘 ) )
comptiunov2.i 𝐼 ∈ V
comptiunov2.j 𝐽 ∈ V
comptiunov2.k 𝐾 = ( 𝐼𝐽 )
comptiunov2.1 𝑘𝐼 ( 𝑑 𝑘 ) ⊆ 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 )
comptiunov2.2 𝑘𝐽 ( 𝑑 𝑘 ) ⊆ 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 )
comptiunov2.3 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 ) ⊆ 𝑘 ∈ ( 𝐼𝐽 ) ( 𝑑 𝑘 )
Assertion comptiunov2i ( 𝑋𝑌 ) = 𝑍

Proof

Step Hyp Ref Expression
1 comptiunov2.x 𝑋 = ( 𝑎 ∈ V ↦ 𝑖𝐼 ( 𝑎 𝑖 ) )
2 comptiunov2.y 𝑌 = ( 𝑏 ∈ V ↦ 𝑗𝐽 ( 𝑏 𝑗 ) )
3 comptiunov2.z 𝑍 = ( 𝑐 ∈ V ↦ 𝑘𝐾 ( 𝑐 𝑘 ) )
4 comptiunov2.i 𝐼 ∈ V
5 comptiunov2.j 𝐽 ∈ V
6 comptiunov2.k 𝐾 = ( 𝐼𝐽 )
7 comptiunov2.1 𝑘𝐼 ( 𝑑 𝑘 ) ⊆ 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 )
8 comptiunov2.2 𝑘𝐽 ( 𝑑 𝑘 ) ⊆ 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 )
9 comptiunov2.3 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 ) ⊆ 𝑘 ∈ ( 𝐼𝐽 ) ( 𝑑 𝑘 )
10 1 funmpt2 Fun 𝑋
11 2 funmpt2 Fun 𝑌
12 funco ( ( Fun 𝑋 ∧ Fun 𝑌 ) → Fun ( 𝑋𝑌 ) )
13 10 11 12 mp2an Fun ( 𝑋𝑌 )
14 3 funmpt2 Fun 𝑍
15 ssv ran 𝑌 ⊆ V
16 ovex ( 𝑎 𝑖 ) ∈ V
17 4 16 iunex 𝑖𝐼 ( 𝑎 𝑖 ) ∈ V
18 17 1 dmmpti dom 𝑋 = V
19 15 18 sseqtrri ran 𝑌 ⊆ dom 𝑋
20 dmcosseq ( ran 𝑌 ⊆ dom 𝑋 → dom ( 𝑋𝑌 ) = dom 𝑌 )
21 19 20 ax-mp dom ( 𝑋𝑌 ) = dom 𝑌
22 ovex ( 𝑏 𝑗 ) ∈ V
23 5 22 iunex 𝑗𝐽 ( 𝑏 𝑗 ) ∈ V
24 23 2 dmmpti dom 𝑌 = V
25 21 24 eqtri dom ( 𝑋𝑌 ) = V
26 4 5 unex ( 𝐼𝐽 ) ∈ V
27 6 26 eqeltri 𝐾 ∈ V
28 ovex ( 𝑐 𝑘 ) ∈ V
29 27 28 iunex 𝑘𝐾 ( 𝑐 𝑘 ) ∈ V
30 29 3 dmmpti dom 𝑍 = V
31 25 30 eqtr4i dom ( 𝑋𝑌 ) = dom 𝑍
32 vex 𝑑 ∈ V
33 32 24 eleqtrri 𝑑 ∈ dom 𝑌
34 fvco ( ( Fun 𝑌𝑑 ∈ dom 𝑌 ) → ( ( 𝑋𝑌 ) ‘ 𝑑 ) = ( 𝑋 ‘ ( 𝑌𝑑 ) ) )
35 11 33 34 mp2an ( ( 𝑋𝑌 ) ‘ 𝑑 ) = ( 𝑋 ‘ ( 𝑌𝑑 ) )
36 oveq1 ( 𝑏 = 𝑑 → ( 𝑏 𝑗 ) = ( 𝑑 𝑗 ) )
37 36 iuneq2d ( 𝑏 = 𝑑 𝑗𝐽 ( 𝑏 𝑗 ) = 𝑗𝐽 ( 𝑑 𝑗 ) )
38 ovex ( 𝑑 𝑗 ) ∈ V
39 5 38 iunex 𝑗𝐽 ( 𝑑 𝑗 ) ∈ V
40 37 2 39 fvmpt ( 𝑑 ∈ V → ( 𝑌𝑑 ) = 𝑗𝐽 ( 𝑑 𝑗 ) )
41 40 elv ( 𝑌𝑑 ) = 𝑗𝐽 ( 𝑑 𝑗 )
42 41 fveq2i ( 𝑋 ‘ ( 𝑌𝑑 ) ) = ( 𝑋 𝑗𝐽 ( 𝑑 𝑗 ) )
43 oveq1 ( 𝑎 = 𝑗𝐽 ( 𝑑 𝑗 ) → ( 𝑎 𝑖 ) = ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 ) )
44 43 iuneq2d ( 𝑎 = 𝑗𝐽 ( 𝑑 𝑗 ) → 𝑖𝐼 ( 𝑎 𝑖 ) = 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 ) )
45 ovex ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 ) ∈ V
46 4 45 iunex 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 ) ∈ V
47 44 1 46 fvmpt ( 𝑗𝐽 ( 𝑑 𝑗 ) ∈ V → ( 𝑋 𝑗𝐽 ( 𝑑 𝑗 ) ) = 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 ) )
48 39 47 ax-mp ( 𝑋 𝑗𝐽 ( 𝑑 𝑗 ) ) = 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 )
49 35 42 48 3eqtri ( ( 𝑋𝑌 ) ‘ 𝑑 ) = 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 )
50 oveq1 ( 𝑐 = 𝑑 → ( 𝑐 𝑘 ) = ( 𝑑 𝑘 ) )
51 50 iuneq2d ( 𝑐 = 𝑑 𝑘𝐾 ( 𝑐 𝑘 ) = 𝑘𝐾 ( 𝑑 𝑘 ) )
52 ovex ( 𝑑 𝑘 ) ∈ V
53 27 52 iunex 𝑘𝐾 ( 𝑑 𝑘 ) ∈ V
54 51 3 53 fvmpt ( 𝑑 ∈ V → ( 𝑍𝑑 ) = 𝑘𝐾 ( 𝑑 𝑘 ) )
55 54 elv ( 𝑍𝑑 ) = 𝑘𝐾 ( 𝑑 𝑘 )
56 49 55 eqeq12i ( ( ( 𝑋𝑌 ) ‘ 𝑑 ) = ( 𝑍𝑑 ) ↔ 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 ) = 𝑘𝐾 ( 𝑑 𝑘 ) )
57 25 56 raleqbii ( ∀ 𝑑 ∈ dom ( 𝑋𝑌 ) ( ( 𝑋𝑌 ) ‘ 𝑑 ) = ( 𝑍𝑑 ) ↔ ∀ 𝑑 ∈ V 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 ) = 𝑘𝐾 ( 𝑑 𝑘 ) )
58 iunxun 𝑘 ∈ ( 𝐼𝐽 ) ( 𝑑 𝑘 ) = ( 𝑘𝐼 ( 𝑑 𝑘 ) ∪ 𝑘𝐽 ( 𝑑 𝑘 ) )
59 7 8 unssi ( 𝑘𝐼 ( 𝑑 𝑘 ) ∪ 𝑘𝐽 ( 𝑑 𝑘 ) ) ⊆ 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 )
60 58 59 eqsstri 𝑘 ∈ ( 𝐼𝐽 ) ( 𝑑 𝑘 ) ⊆ 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 )
61 9 60 eqssi 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 ) = 𝑘 ∈ ( 𝐼𝐽 ) ( 𝑑 𝑘 )
62 iuneq1 ( 𝐾 = ( 𝐼𝐽 ) → 𝑘𝐾 ( 𝑑 𝑘 ) = 𝑘 ∈ ( 𝐼𝐽 ) ( 𝑑 𝑘 ) )
63 6 62 ax-mp 𝑘𝐾 ( 𝑑 𝑘 ) = 𝑘 ∈ ( 𝐼𝐽 ) ( 𝑑 𝑘 )
64 61 63 eqtr4i 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 ) = 𝑘𝐾 ( 𝑑 𝑘 )
65 64 a1i ( 𝑑 ∈ V → 𝑖𝐼 ( 𝑗𝐽 ( 𝑑 𝑗 ) 𝑖 ) = 𝑘𝐾 ( 𝑑 𝑘 ) )
66 57 65 mprgbir 𝑑 ∈ dom ( 𝑋𝑌 ) ( ( 𝑋𝑌 ) ‘ 𝑑 ) = ( 𝑍𝑑 )
67 eqfunfv ( ( Fun ( 𝑋𝑌 ) ∧ Fun 𝑍 ) → ( ( 𝑋𝑌 ) = 𝑍 ↔ ( dom ( 𝑋𝑌 ) = dom 𝑍 ∧ ∀ 𝑑 ∈ dom ( 𝑋𝑌 ) ( ( 𝑋𝑌 ) ‘ 𝑑 ) = ( 𝑍𝑑 ) ) ) )
68 67 biimprd ( ( Fun ( 𝑋𝑌 ) ∧ Fun 𝑍 ) → ( ( dom ( 𝑋𝑌 ) = dom 𝑍 ∧ ∀ 𝑑 ∈ dom ( 𝑋𝑌 ) ( ( 𝑋𝑌 ) ‘ 𝑑 ) = ( 𝑍𝑑 ) ) → ( 𝑋𝑌 ) = 𝑍 ) )
69 31 66 68 mp2ani ( ( Fun ( 𝑋𝑌 ) ∧ Fun 𝑍 ) → ( 𝑋𝑌 ) = 𝑍 )
70 13 14 69 mp2an ( 𝑋𝑌 ) = 𝑍