Step |
Hyp |
Ref |
Expression |
1 |
|
comptiunov2.x |
⊢ 𝑋 = ( 𝑎 ∈ V ↦ ∪ 𝑖 ∈ 𝐼 ( 𝑎 ↑ 𝑖 ) ) |
2 |
|
comptiunov2.y |
⊢ 𝑌 = ( 𝑏 ∈ V ↦ ∪ 𝑗 ∈ 𝐽 ( 𝑏 ↑ 𝑗 ) ) |
3 |
|
comptiunov2.z |
⊢ 𝑍 = ( 𝑐 ∈ V ↦ ∪ 𝑘 ∈ 𝐾 ( 𝑐 ↑ 𝑘 ) ) |
4 |
|
comptiunov2.i |
⊢ 𝐼 ∈ V |
5 |
|
comptiunov2.j |
⊢ 𝐽 ∈ V |
6 |
|
comptiunov2.k |
⊢ 𝐾 = ( 𝐼 ∪ 𝐽 ) |
7 |
|
comptiunov2.1 |
⊢ ∪ 𝑘 ∈ 𝐼 ( 𝑑 ↑ 𝑘 ) ⊆ ∪ 𝑖 ∈ 𝐼 ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) |
8 |
|
comptiunov2.2 |
⊢ ∪ 𝑘 ∈ 𝐽 ( 𝑑 ↑ 𝑘 ) ⊆ ∪ 𝑖 ∈ 𝐼 ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) |
9 |
|
comptiunov2.3 |
⊢ ∪ 𝑖 ∈ 𝐼 ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) ⊆ ∪ 𝑘 ∈ ( 𝐼 ∪ 𝐽 ) ( 𝑑 ↑ 𝑘 ) |
10 |
1
|
funmpt2 |
⊢ Fun 𝑋 |
11 |
2
|
funmpt2 |
⊢ Fun 𝑌 |
12 |
|
funco |
⊢ ( ( Fun 𝑋 ∧ Fun 𝑌 ) → Fun ( 𝑋 ∘ 𝑌 ) ) |
13 |
10 11 12
|
mp2an |
⊢ Fun ( 𝑋 ∘ 𝑌 ) |
14 |
3
|
funmpt2 |
⊢ Fun 𝑍 |
15 |
|
ssv |
⊢ ran 𝑌 ⊆ V |
16 |
|
ovex |
⊢ ( 𝑎 ↑ 𝑖 ) ∈ V |
17 |
4 16
|
iunex |
⊢ ∪ 𝑖 ∈ 𝐼 ( 𝑎 ↑ 𝑖 ) ∈ V |
18 |
17 1
|
dmmpti |
⊢ dom 𝑋 = V |
19 |
15 18
|
sseqtrri |
⊢ ran 𝑌 ⊆ dom 𝑋 |
20 |
|
dmcosseq |
⊢ ( ran 𝑌 ⊆ dom 𝑋 → dom ( 𝑋 ∘ 𝑌 ) = dom 𝑌 ) |
21 |
19 20
|
ax-mp |
⊢ dom ( 𝑋 ∘ 𝑌 ) = dom 𝑌 |
22 |
|
ovex |
⊢ ( 𝑏 ↑ 𝑗 ) ∈ V |
23 |
5 22
|
iunex |
⊢ ∪ 𝑗 ∈ 𝐽 ( 𝑏 ↑ 𝑗 ) ∈ V |
24 |
23 2
|
dmmpti |
⊢ dom 𝑌 = V |
25 |
21 24
|
eqtri |
⊢ dom ( 𝑋 ∘ 𝑌 ) = V |
26 |
4 5
|
unex |
⊢ ( 𝐼 ∪ 𝐽 ) ∈ V |
27 |
6 26
|
eqeltri |
⊢ 𝐾 ∈ V |
28 |
|
ovex |
⊢ ( 𝑐 ↑ 𝑘 ) ∈ V |
29 |
27 28
|
iunex |
⊢ ∪ 𝑘 ∈ 𝐾 ( 𝑐 ↑ 𝑘 ) ∈ V |
30 |
29 3
|
dmmpti |
⊢ dom 𝑍 = V |
31 |
25 30
|
eqtr4i |
⊢ dom ( 𝑋 ∘ 𝑌 ) = dom 𝑍 |
32 |
|
vex |
⊢ 𝑑 ∈ V |
33 |
32 24
|
eleqtrri |
⊢ 𝑑 ∈ dom 𝑌 |
34 |
|
fvco |
⊢ ( ( Fun 𝑌 ∧ 𝑑 ∈ dom 𝑌 ) → ( ( 𝑋 ∘ 𝑌 ) ‘ 𝑑 ) = ( 𝑋 ‘ ( 𝑌 ‘ 𝑑 ) ) ) |
35 |
11 33 34
|
mp2an |
⊢ ( ( 𝑋 ∘ 𝑌 ) ‘ 𝑑 ) = ( 𝑋 ‘ ( 𝑌 ‘ 𝑑 ) ) |
36 |
|
oveq1 |
⊢ ( 𝑏 = 𝑑 → ( 𝑏 ↑ 𝑗 ) = ( 𝑑 ↑ 𝑗 ) ) |
37 |
36
|
iuneq2d |
⊢ ( 𝑏 = 𝑑 → ∪ 𝑗 ∈ 𝐽 ( 𝑏 ↑ 𝑗 ) = ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ) |
38 |
|
ovex |
⊢ ( 𝑑 ↑ 𝑗 ) ∈ V |
39 |
5 38
|
iunex |
⊢ ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ∈ V |
40 |
37 2 39
|
fvmpt |
⊢ ( 𝑑 ∈ V → ( 𝑌 ‘ 𝑑 ) = ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ) |
41 |
40
|
elv |
⊢ ( 𝑌 ‘ 𝑑 ) = ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) |
42 |
41
|
fveq2i |
⊢ ( 𝑋 ‘ ( 𝑌 ‘ 𝑑 ) ) = ( 𝑋 ‘ ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ) |
43 |
|
oveq1 |
⊢ ( 𝑎 = ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) → ( 𝑎 ↑ 𝑖 ) = ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) ) |
44 |
43
|
iuneq2d |
⊢ ( 𝑎 = ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) → ∪ 𝑖 ∈ 𝐼 ( 𝑎 ↑ 𝑖 ) = ∪ 𝑖 ∈ 𝐼 ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) ) |
45 |
|
ovex |
⊢ ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) ∈ V |
46 |
4 45
|
iunex |
⊢ ∪ 𝑖 ∈ 𝐼 ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) ∈ V |
47 |
44 1 46
|
fvmpt |
⊢ ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ∈ V → ( 𝑋 ‘ ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ) = ∪ 𝑖 ∈ 𝐼 ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) ) |
48 |
39 47
|
ax-mp |
⊢ ( 𝑋 ‘ ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ) = ∪ 𝑖 ∈ 𝐼 ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) |
49 |
35 42 48
|
3eqtri |
⊢ ( ( 𝑋 ∘ 𝑌 ) ‘ 𝑑 ) = ∪ 𝑖 ∈ 𝐼 ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) |
50 |
|
oveq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 ↑ 𝑘 ) = ( 𝑑 ↑ 𝑘 ) ) |
51 |
50
|
iuneq2d |
⊢ ( 𝑐 = 𝑑 → ∪ 𝑘 ∈ 𝐾 ( 𝑐 ↑ 𝑘 ) = ∪ 𝑘 ∈ 𝐾 ( 𝑑 ↑ 𝑘 ) ) |
52 |
|
ovex |
⊢ ( 𝑑 ↑ 𝑘 ) ∈ V |
53 |
27 52
|
iunex |
⊢ ∪ 𝑘 ∈ 𝐾 ( 𝑑 ↑ 𝑘 ) ∈ V |
54 |
51 3 53
|
fvmpt |
⊢ ( 𝑑 ∈ V → ( 𝑍 ‘ 𝑑 ) = ∪ 𝑘 ∈ 𝐾 ( 𝑑 ↑ 𝑘 ) ) |
55 |
54
|
elv |
⊢ ( 𝑍 ‘ 𝑑 ) = ∪ 𝑘 ∈ 𝐾 ( 𝑑 ↑ 𝑘 ) |
56 |
49 55
|
eqeq12i |
⊢ ( ( ( 𝑋 ∘ 𝑌 ) ‘ 𝑑 ) = ( 𝑍 ‘ 𝑑 ) ↔ ∪ 𝑖 ∈ 𝐼 ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) = ∪ 𝑘 ∈ 𝐾 ( 𝑑 ↑ 𝑘 ) ) |
57 |
25 56
|
raleqbii |
⊢ ( ∀ 𝑑 ∈ dom ( 𝑋 ∘ 𝑌 ) ( ( 𝑋 ∘ 𝑌 ) ‘ 𝑑 ) = ( 𝑍 ‘ 𝑑 ) ↔ ∀ 𝑑 ∈ V ∪ 𝑖 ∈ 𝐼 ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) = ∪ 𝑘 ∈ 𝐾 ( 𝑑 ↑ 𝑘 ) ) |
58 |
|
iunxun |
⊢ ∪ 𝑘 ∈ ( 𝐼 ∪ 𝐽 ) ( 𝑑 ↑ 𝑘 ) = ( ∪ 𝑘 ∈ 𝐼 ( 𝑑 ↑ 𝑘 ) ∪ ∪ 𝑘 ∈ 𝐽 ( 𝑑 ↑ 𝑘 ) ) |
59 |
7 8
|
unssi |
⊢ ( ∪ 𝑘 ∈ 𝐼 ( 𝑑 ↑ 𝑘 ) ∪ ∪ 𝑘 ∈ 𝐽 ( 𝑑 ↑ 𝑘 ) ) ⊆ ∪ 𝑖 ∈ 𝐼 ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) |
60 |
58 59
|
eqsstri |
⊢ ∪ 𝑘 ∈ ( 𝐼 ∪ 𝐽 ) ( 𝑑 ↑ 𝑘 ) ⊆ ∪ 𝑖 ∈ 𝐼 ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) |
61 |
9 60
|
eqssi |
⊢ ∪ 𝑖 ∈ 𝐼 ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) = ∪ 𝑘 ∈ ( 𝐼 ∪ 𝐽 ) ( 𝑑 ↑ 𝑘 ) |
62 |
|
iuneq1 |
⊢ ( 𝐾 = ( 𝐼 ∪ 𝐽 ) → ∪ 𝑘 ∈ 𝐾 ( 𝑑 ↑ 𝑘 ) = ∪ 𝑘 ∈ ( 𝐼 ∪ 𝐽 ) ( 𝑑 ↑ 𝑘 ) ) |
63 |
6 62
|
ax-mp |
⊢ ∪ 𝑘 ∈ 𝐾 ( 𝑑 ↑ 𝑘 ) = ∪ 𝑘 ∈ ( 𝐼 ∪ 𝐽 ) ( 𝑑 ↑ 𝑘 ) |
64 |
61 63
|
eqtr4i |
⊢ ∪ 𝑖 ∈ 𝐼 ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) = ∪ 𝑘 ∈ 𝐾 ( 𝑑 ↑ 𝑘 ) |
65 |
64
|
a1i |
⊢ ( 𝑑 ∈ V → ∪ 𝑖 ∈ 𝐼 ( ∪ 𝑗 ∈ 𝐽 ( 𝑑 ↑ 𝑗 ) ↑ 𝑖 ) = ∪ 𝑘 ∈ 𝐾 ( 𝑑 ↑ 𝑘 ) ) |
66 |
57 65
|
mprgbir |
⊢ ∀ 𝑑 ∈ dom ( 𝑋 ∘ 𝑌 ) ( ( 𝑋 ∘ 𝑌 ) ‘ 𝑑 ) = ( 𝑍 ‘ 𝑑 ) |
67 |
|
eqfunfv |
⊢ ( ( Fun ( 𝑋 ∘ 𝑌 ) ∧ Fun 𝑍 ) → ( ( 𝑋 ∘ 𝑌 ) = 𝑍 ↔ ( dom ( 𝑋 ∘ 𝑌 ) = dom 𝑍 ∧ ∀ 𝑑 ∈ dom ( 𝑋 ∘ 𝑌 ) ( ( 𝑋 ∘ 𝑌 ) ‘ 𝑑 ) = ( 𝑍 ‘ 𝑑 ) ) ) ) |
68 |
67
|
biimprd |
⊢ ( ( Fun ( 𝑋 ∘ 𝑌 ) ∧ Fun 𝑍 ) → ( ( dom ( 𝑋 ∘ 𝑌 ) = dom 𝑍 ∧ ∀ 𝑑 ∈ dom ( 𝑋 ∘ 𝑌 ) ( ( 𝑋 ∘ 𝑌 ) ‘ 𝑑 ) = ( 𝑍 ‘ 𝑑 ) ) → ( 𝑋 ∘ 𝑌 ) = 𝑍 ) ) |
69 |
31 66 68
|
mp2ani |
⊢ ( ( Fun ( 𝑋 ∘ 𝑌 ) ∧ Fun 𝑍 ) → ( 𝑋 ∘ 𝑌 ) = 𝑍 ) |
70 |
13 14 69
|
mp2an |
⊢ ( 𝑋 ∘ 𝑌 ) = 𝑍 |